Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biochim Biophys Acta ; 1772(5): 570-9, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17382524

RESUMEN

The sarcoglycan complex in muscle consists of alpha-, beta-, gamma- and delta-sarcoglycan and is part of the larger dystrophin-glycoprotein complex (DGC), which is essential for maintaining muscle membrane integrity. Mutations in any of the four sarcoglycans cause limb-girdle muscular dystrophies (LGMD). In this report, we have identified a novel interaction between delta-sarcoglycan and the 16 kDa subunit c (16K) of vacuolar H(+)-ATPase. Co-expression studies in heterologous cell system revealed that 16K interacts specifically with delta-sarcoglycan and the highly related gamma-sarcoglycan through the transmembrane domains. In cultured C2C12 myotubes, 16K forms a complex with sarcoglycans at the plasma membrane. Loss of sarcoglycans in the sarcoglycan-deficient BIO14.6 hamster destabilizes the DGC and alters the localization of 16K at the sarcolemma. In addition, the steady state level of beta(1)-integrin is increased. Recent studies have shown that 16K also interacts directly with beta(1)-integrin and our data demonstrated that sarcoglycans, 16K and beta(1)-integrin were immunoprecipitated together in C2C12 myotubes. Since sarcoglycans have been proposed to participate in bi-directional signaling with integrins, our findings suggest that 16K might mediate the communication between sarcoglycans and integrins and play an important role in the pathogenesis of muscular dystrophy.


Asunto(s)
Sarcoglicanos/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Cricetinae , Integrina beta1/metabolismo , Masculino , Ratones , Microscopía Inmunoelectrónica , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/metabolismo , Unión Proteica , Subunidades de Proteína/metabolismo , Sarcolema/metabolismo , Sarcolema/ultraestructura , Transducción de Señal
2.
J Clin Invest ; 110(6): 807-14, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12235112

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe progressive muscle-wasting disorder caused by mutations in the dystrophin gene. Studies have shown that bone marrow cells transplanted into lethally irradiated mdx mice, the mouse model of DMD, can become part of skeletal muscle myofibers. Whether human marrow cells also have this ability is unknown. Here we report the analysis of muscle biopsies from a DMD patient (DMD-BMT1) who received bone marrow transplantation at age 1 year for X-linked severe combined immune deficiency and who was diagnosed with DMD at age 12 years. Analysis of muscle biopsies from DMD-BMT1 revealed the presence of donor nuclei within a small number of muscle myofibers (0.5-0.9%). The majority of the myofibers produce a truncated, in-frame isoform of dystrophin lacking exons 44 and 45 (not wild-type). The presence of bone marrow-derived donor nuclei in the muscle of this patient documents the ability of exogenous human bone marrow cells to fuse into skeletal muscle and persist up to 13 years after transplantation.


Asunto(s)
Células de la Médula Ósea/fisiología , Trasplante de Médula Ósea , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Adolescente , Animales , Biopsia , Células de la Médula Ósea/ultraestructura , Núcleo Celular/ultraestructura , Niño , Distrofina/genética , Distrofina/metabolismo , Exones/genética , Femenino , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Lactante , Masculino , Músculo Esquelético/citología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Inmunodeficiencia Combinada Grave/terapia , Factores de Tiempo
3.
J Appl Physiol (1985) ; 100(1): 212-20, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16195392

RESUMEN

Messenger RNA levels of phospholemman (PLM), a member of the FXYD family of small single-span membrane proteins with putative ion-transport regulatory properties, were increased in postmyocardial infarction (MI) rat myocytes. We tested the hypothesis that the previously observed reduction in Na+-K+-ATPase activity in MI rat myocytes was due to PLM overexpression. In rat hearts harvested 3 and 7 days post-MI, PLM protein expression was increased by two- and fourfold, respectively. To simulate increased PLM expression post-MI, PLM was overexpressed in normal adult rat myocytes by adenovirus-mediated gene transfer. PLM overexpression did not affect the relative level of phosphorylation on serine68 of PLM. Na+-K+-ATPase activity was measured as ouabain-sensitive Na+-K+ pump current (Ip). Compared with control myocytes overexpressing green fluorescent protein alone, Ip measured in myocytes overexpressing PLM was significantly (P < 0.0001) lower at similar membrane voltages, pipette Na+ ([Na+]pip) and extracellular K+ ([K+]o) concentrations. From -70 to +60 mV, neither [Na+]pip nor [K+]o required to attain half-maximal Ip was significantly different between control and PLM myocytes. This phenotype of decreased V(max) without appreciable changes in K(m) for Na+ and K+ in PLM-overexpressed myocytes was similar to that observed in MI rat myocytes. Inhibition of Ip by PLM overexpression was not due to decreased Na+-K+-ATPase expression because there were no changes in either protein or messenger RNA levels of either alpha1- or alpha2-isoforms of Na+-K+-ATPase. In native rat cardiac myocytes, PLM coimmunoprecipitated with alpha-subunits of Na+-K+-ATPase. Inhibition of Na+-K+-ATPase by PLM overexpression, in addition to previously reported decrease in Na+-K+-ATPase expression, may explain altered V(max) but not K(m) of Na+-K+-ATPase in postinfarction rat myocytes.


Asunto(s)
Activación del Canal Iónico , Proteínas de la Membrana/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Células Cultivadas , Activación Enzimática , Regulación de la Expresión Génica , Masculino , Potenciales de la Membrana , Proteínas de la Membrana/genética , Fosfoproteínas/genética , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Exp Neurol ; 205(1): 257-69, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17397833

RESUMEN

Sarcoglycans are originally identified in muscle for their involvement in limb-girdle muscular dystrophies. They form a multi-meric complex (alpha-, beta-, gamma-, delta-sarcoglycan) that associates with dystrophin, dystroglycan and other proteins to constitute the larger dystrophin-glycoprotein complex at the muscle membrane. Three sarcoglycan subunits (epsilon-, beta-, delta-sarcoglycan) were previously identified in Schwann cells and shown to associate with dystroglycan and a Schwann cell-specific dystrophin isoform (Dp116) at the outermost Schwann cell membrane. Currently, little is known about the exact composition and function of the sarcoglycan complex in the peripheral nervous system. In this study, we showed that the Schwann cell sarcoglycan complex consists of epsilon-, beta-, delta-sarcoglycan and the newly identified zeta-sarcoglycan subunit. The expression of sarcoglycans precedes the onset of myelination and is induced by neurons. In sarcoglycan-deficient BIO14.6 hamsters, loss of the Schwann cell sarcoglycan complex reduces the steady state levels of alpha-dystroglycan and Dp116. Ultrastructural analysis of sciatic nerves from the mutant animals revealed altered myelin sheaths and disorganized Schmidt-Lanterman incisures indicative of myelin instability. The disruption in myelin structure increased in severity with age. Nerve conduction studies also showed subtle electrophysiological abnormalities in the BIO14.6 hamsters consistent with reduced myelin stability. Together, these findings suggest an important role of sarcoglycans in the stability of peripheral nerve myelin.


Asunto(s)
Vaina de Mielina/química , Sarcoglicanos/fisiología , Células de Schwann/metabolismo , Envejecimiento , Animales , Células Cultivadas , Técnicas de Cocultivo , Cricetinae , Citoplasma/ultraestructura , Estabilidad de Medicamentos , Distroglicanos/química , Distroglicanos/metabolismo , Electrofisiología , Masculino , Microscopía Electrónica , Vaina de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Sistema Nervioso/fisiopatología , Conducción Nerviosa , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Ratas , Ratas Sprague-Dawley , Sarcoglicanos/deficiencia , Sarcoglicanos/metabolismo , Células de Schwann/ultraestructura , Nervio Ciático/ultraestructura , Factores de Tiempo
5.
Exp Cell Res ; 312(9): 1610-25, 2006 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-16524571

RESUMEN

Mutations in sarcoglycans have been reported to cause autosomal-recessive limb-girdle muscular dystrophies. In skeletal and cardiac muscle, sarcoglycans are assembled into a complex on the sarcolemma from four subunits (alpha, beta, gamma, delta). In this report, we present a detailed structural analysis of sarcoglycans using deletion study, limited proteolysis and co-immunoprecipitation. Our results indicate that the extracellular regions of sarcoglycans consist of distinctive functional domains connected by proteinase K-sensitive sites. The N-terminal half domains are required for sarcoglycan interaction. The C-terminal half domains of beta-, gamma- and delta-sarcoglycan consist of a cysteine-rich motif and a previously unrecognized conserved sequence, both of which are essential for plasma membrane localization. Using a heterologous expression system, we demonstrate that missense sarcoglycan mutations affect sarcoglycan complex assembly and/or localization to the cell surface. Our data suggest that the formation of a stable complex is necessary but not sufficient for plasma membrane targeting. Finally, we provide evidence that the beta/delta-sarcoglycan core can associate with the C-terminus of dystrophin. Our results therefore generate important information on the structure of the sarcoglycan complex and the molecular mechanisms underlying the effects of various sarcoglycan mutations in muscular dystrophies.


Asunto(s)
Membrana Celular/metabolismo , Sarcoglicanos/fisiología , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Células COS , Chlorocebus aethiops , Cisteína/genética , Distrofina/metabolismo , Glicosilación , Inmunoprecipitación , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas/fisiología , Ratas , Sarcoglicanos/genética , Sarcoglicanos/metabolismo , Homología de Secuencia de Aminoácido , Transfección
6.
Muscle Nerve ; 29(3): 409-19, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14981741

RESUMEN

Mutations in sarcoglycans (SG) have been reported to cause autosomal-recessive limb-girdle muscular dystrophy (LGMD) and dilated cardiomyopathy. In skeletal and cardiac muscle, sarcoglycans exist as a complex of four transmembrane proteins (alpha-, beta-, gamma-, and delta-SG). In this study, the assembly of the sarcoglycan complex was examined in a heterologous expression system. Our results demonstrated that the assembly process occurs as a discrete stepwise process. We found that beta-SG appears to play an initiating role and its association with delta-SG is essential for the proper localization of the sarcoglycan complex to the cell membrane. The incorporation of alpha-SG into the sarcoglycan complex occurs at the final stage by interaction with gamma-SG. These findings were supported by chemical cross-linking of endogenous sarcoglycans in cultured myotubes. We have also provided evidence that glycosylation-defective mutations in beta-SG and a common mutation in gamma-SG (C283Y) disrupt sarcoglycan-complex formation. Our proposed model for the assembly and structure of sarcoglycans should generate important insight into their function in muscle as well as their role in muscular dystrophies and cardiomyopathies.


Asunto(s)
Diferenciación Celular/genética , Proteínas del Citoesqueleto/metabolismo , Glicoproteínas de Membrana/metabolismo , Animales , Células COS , Cardiomiopatías/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Proteínas del Citoesqueleto/genética , Distroglicanos , Fibroblastos , Glicosilación , Sustancias Macromoleculares , Glicoproteínas de Membrana/genética , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Distrofias Musculares/genética , Mutación/genética , Mioblastos , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Sarcoglicanos , Transfección
7.
J Biol Chem ; 277(37): 34375-82, 2002 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-12167663

RESUMEN

Mammalian isoforms of calcium-permeable Drosophila transient receptor potential channels (TRPC) are involved in the sustained phase of calcium entry in nonexcitable cells. Erythropoietin (Epo) stimulates a rise in intracellular calcium ([Ca](i)) via activation of voltage-independent calcium channel(s) in erythroid cells. Here, involvement of murine orthologs of classical TRPC in the Epo-modulated increase in [Ca](i) was examined. RT-PCR of TRPC 1-6 revealed high expression of only TRPC2 in Epo-dependent cell lines HCD-57 and Ba/F3 Epo-R, in which Epo stimulates a rise in [Ca](i). Using RT-PCR, Western blotting, and immunolocalization, expression of the longest isoform of mTRPC2, clone 14, was demonstrated in HCD-57 cells, Ba/F3 Epo-R cells, and primary murine erythroblasts. To determine whether erythropoietin is capable of modulating calcium influx through TRPC2, CHO cells were cotransfected with Epo-R subcloned into pTracer-CMV and either murine TRPC2 clone 14 or TRPC6, a negative control, into pQBI50. Successful transfection of Epo-R was verified in single cells by detection of green fluorescent protein from pTracer-CMV using digital video imaging, and successful transfection of TRPC was confirmed by detection of blue fluorescent protein fused through a flexible linker to TRPC. [Ca](i) changes were simultaneously monitored in cells loaded with Rhod-2 or Fura Red. Epo stimulation of CHO cells cotransfected with Epo-R and TRPC2 resulted in a rise in [Ca](i) above base line (372 +/- 71%), which was significantly greater (p < or = 0.0007) than that seen in cells transfected with TRPC6 or empty pQBI50 vector. This rise in [Ca](i) required Epo and extracellular calcium. These results identify a calcium-permeable channel, TRPC2, in erythroid cells and demonstrate modulation of calcium influx through this channel by erythropoietin.


Asunto(s)
Canales de Calcio/fisiología , Calcio/metabolismo , Eritropoyetina/farmacología , Canales Iónicos , Proteínas de la Membrana , Animales , Células CHO , Cricetinae , Ratones , Ratones Endogámicos C57BL , Receptores de Eritropoyetina/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales Catiónicos TRPM , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA