Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurosci ; 34(6): 2349-54, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24501373

RESUMEN

Adult-generated granule cells (GCs) in the dentate gyrus must establish synapses with preexisting neurons to participate in network activity. To determine the source of early glutamatergic synapses on newborn GCs in adult mice, we examined synaptic currents at the developmental stage when NMDA receptor-mediated silent synapses are first established. We show that hilar mossy cells provide initial glutamatergic synapses as well as disynaptic GABAergic input to adult-generated dentate GCs.


Asunto(s)
Ácido Glutámico/fisiología , Fibras Musgosas del Hipocampo/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Factores de Edad , Animales , Giro Dentado/citología , Giro Dentado/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos
2.
J Neurosci ; 33(15): 6614-22, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575858

RESUMEN

Neural activity enhances adult neurogenesis, enabling experience to influence the construction of new circuits. GABAA receptor-mediated depolarization of newborn neurons in the adult and developing brain promotes glutamatergic synaptic integration since chronic reduction of GABA depolarization impairs morphological maturation and formation of glutamatergic synapses. Here we demonstrate an acute role of GABA depolarization in glutamatergic synaptic integration. Using proopiomelanocortin enhanced-green fluorescent protein reporter mice, we identify a developmental stage when adult-generated neurons have glutamatergic synaptic transmission mediated solely by NMDA receptors (NMDARs), representing the initial silent synapses before AMPA receptor (AMPAR)-mediated functional transmission. We show that pairing synaptic stimulation with postsynaptic depolarization results in synapse unsilencing that requires NMDAR activation. GABA synaptic depolarization enables activation of NMDARs in the absence of AMPAR-mediated transmission and is required for synapse unsilencing induced by synaptic activity in vitro as well as a brief exposure to an enriched environment in vivo. The rapid appearance of AMPAR-mediated EPSCs and the lack of maturational changes show that GABA depolarization acutely allows NMDAR activation required for initial synapse unsilencing. Together, these results also reveal that adult-generated neurons in a critical period for survival use GABA signaling to rapidly initiate functional glutamate-mediated transmission in response to experience.


Asunto(s)
Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Período Crítico Psicológico , Ambiente , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Hipocampo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/fisiología , Neuronas/fisiología , Proopiomelanocortina/genética , Transmisión Sináptica/fisiología
3.
Cell Rep ; 24(11): 2883-2893, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30208314

RESUMEN

Endocannabinoid (eCB)-mediated long-term depression (LTD) requires dopamine (DA) D2 receptors (D2Rs) for eCB mobilization. The cellular locus of the D2Rs involved in LTD induction remains highly debated. We directly examined the role in LTD induction of D2Rs expressed by striatal cholinergic interneurons (Chls) and indirect pathway medium spiny neurons (iMSNs) using neuron-specific targeted deletion of D2Rs. Deletion of Chl-D2Rs (Chl-Drd2KO) impaired LTD induction in both subtypes of MSNs. LTD induction was restored in the Chl-Drd2KO mice by an M1-selective muscarinic acetylcholine receptor antagonist. In contrast, after the deletion of iMSN-D2Rs (iMSN-Drd2KO), LTD induction was intact in MSNs. Separate interrogation of direct pathway and iMSNs revealed a deficit in LTD induction only at synapses onto iMSNs that lack D2Rs. LTD induction in iMSNs was restored by D2R agonist application. Our findings suggest that Chl D2Rs strongly modulate LTD induction in MSNs, with iMSN-D2Rs having a weaker, iMSN-specific, modulatory effect.


Asunto(s)
Neuronas Colinérgicas/citología , Neuronas Colinérgicas/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Interneuronas/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Femenino , Interneuronas/citología , Depresión Sináptica a Largo Plazo/genética , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Ratones , Plasticidad Neuronal/genética , Neuronas/citología
4.
Neuropsychopharmacology ; 42(5): 1070-1081, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27827370

RESUMEN

Although ethanol is one of the most widely used drugs, we still lack a full understanding of which neuronal subtypes are affected by this drug. Pacemaker neurons exert powerful control over brain circuit function, but little is known about ethanol effects on these types of neurons. Neurons in the external globus pallidus (GPe) generate pacemaker activity that controls basal ganglia, circuitry associated with habitual and compulsive drug use. We performed patch-clamp recordings from GPe neurons and found that bath application of ethanol dose-dependently decreased the firing rate of low-frequency GPe neurons, but did not alter the firing of high-frequency neurons. GABA or glutamate receptor antagonists did not block the ethanol effect. The GPe is comprised of a heterogeneous population of neurons. We used Lhx6-EGFP and Npas1-tdTm mice strains to identify low-frequency neurons. Lhx6 and Npas1 neurons exhibited decreased firing with ethanol, but only Npas1 neurons were sensitive to 10 mM ethanol. Large-conductance voltage and Ca2+-activated K+ (BK) channel have a key role in the ethanol effect on GPe neurons, as the application of BK channel inhibitors blocked the ethanol-induced firing decrease. Ethanol also increased BK channel open probability measured in single-channel recordings from Npas1-tdTm neurons. In addition, in vivo electrophysiological recordings from GPe showed that ethanol decreased the firing of a large subset of low-frequency neurons. These findings indicate how selectivity of ethanol effects on pacemaker neurons can occur, and enhance our understanding of the mechanisms contributing to acute ethanol effects on the basal ganglia.


Asunto(s)
Etanol/administración & dosificación , Globo Pálido/efectos de los fármacos , Globo Pálido/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Femenino , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos
5.
Neuron ; 90(6): 1312-1324, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27238866

RESUMEN

Everyday function demands efficient and flexible decision-making that allows for habitual and goal-directed action control. An inability to shift has been implicated in disorders with impaired decision-making, including obsessive-compulsive disorder and addiction. Despite this, our understanding of the specific molecular mechanisms and circuitry involved in shifting action control remains limited. Here we identify an endogenous molecular mechanism in a specific cortical-striatal pathway that mediates the transition between goal-directed and habitual action strategies. Deletion of cannabinoid type 1 (CB1) receptors from cortical projections originating in the orbital frontal cortex (OFC) prevents mice from shifting from goal-directed to habitual instrumental lever pressing. Activity of OFC neurons projecting to dorsal striatum (OFC-DS) and, specifically, activity of OFC-DS terminals is necessary for goal-directed action control. Lastly, CB1 deletion from OFC-DS neurons prevents the shift from goal-directed to habitual action control. These data suggest that the emergence of habits depends on endocannabinoid-mediated attenuation of a competing circuit controlling goal-directed behaviors.


Asunto(s)
Condicionamiento Operante , Cuerpo Estriado/fisiología , Endocannabinoides/fisiología , Hábitos , Corteza Prefrontal/fisiología , Receptor Cannabinoide CB1/fisiología , Animales , Clozapina/análogos & derivados , Clozapina/farmacología , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Inhibición Neural/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Receptor Cannabinoide CB1/genética
6.
Front Neural Circuits ; 6: 113, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23316139

RESUMEN

The dentate gyrus is one of the few areas of the brain where new neurons are generated throughout life. Neural activity influences multiple stages of neurogenesis, thereby allowing experience to regulate the production of new neurons. It is now well established that GABA(A) receptor-mediated signaling plays a pivotal role in mediating activity-dependent regulation of adult neurogenesis. GABA first acts as a trophic signal that depolarizes progenitors and early post mitotic granule cells, enabling network activity to control molecular cascades essential for proliferation, survival and growth. Following the development of glutamatergic synaptic inputs, GABA signaling switches from excitatory to inhibitory. Thereafter robust synaptic inhibition enforces low spiking probability of granule cells in response to cortical excitatory inputs and maintains the sparse activity patterns characteristic of this brain region. Here we review these dynamic functions of GABA across granule cell maturation, focusing on the potential role of specific interneuron circuits at progressive developmental stages. We further highlight questions that remain unanswered about GABA signaling in granule cell development and excitability.

7.
Cell Stem Cell ; 7(4): 483-95, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20887954

RESUMEN

In the adult hippocampus, neuroprogenitor cells in the subgranular zone (SGZ) of the dentate gyrus give rise to newborn neuroblasts. However, only a small subset of these cells integrates into the hippocampal circuitry as mature neurons at the end of a 4 week period. Here, we show that the majority of the newborn cells undergo death by apoptosis in the first 1 to 4 days of their life, during the transition from amplifying neuroprogenitors to neuroblasts. These apoptotic newborn cells are rapidly cleared out through phagocytosis by unchallenged microglia present in the adult SGZ niche. Phagocytosis by the microglia is efficient and undeterred by increased age or inflammatory challenge. Our results suggest that the main critical period of newborn cell survival occurs within a few days of birth and reveal a new role for microglia in maintaining the homeostasis of the baseline neurogenic cascade.


Asunto(s)
Apoptosis , Hipocampo/citología , Neurogénesis , Fagocitosis , Animales , Ratones , Ratones Transgénicos , Células-Madre Neurales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA