RESUMEN
Thymosin ß4 (Tß4) was extracted forty years agofrom calf thymus. Since then, it has been identified as a G-actin binding protein involved in blood clotting, tissue regeneration, angiogenesis, and anti-inflammatory processes. Tß4 has also been implicated in tumor metastasis and neurodegeneration. However, the precise roles and mechanism(s) of action of Tß4 in these processes remain largely unknown, with the binding of the G-actin protein being insufficient to explain these multi-actions. Here we identify for the first time the important role of Tß4 mechanism in ferroptosis, an iron-dependent form of cell death, which leads to neurodegeneration and somehow protects cancer cells against cell death. Specifically, we demonstrate four iron2+ and iron3+ binding regions along the peptide and show that the presence of Tß4 in cell growing medium inhibits erastin and glutamate-induced ferroptosis in the macrophage cell line. Moreover, Tß4 increases the expression of oxidative stress-related genes, namely BAX, hem oxygenase-1, heat shock protein 70 and thioredoxin reductase 1, which are downregulated during ferroptosis. We state the hypothesis that Tß4 is an endogenous iron chelator and take part in iron homeostasis in the ferroptosis process. We discuss the literature data of parallel involvement of Tß4 and ferroptosis in different human pathologies, mainly cancer and neurodegeneration. Our findings confronted with literature data show that controlled Tß4 release could command on/off switching of ferroptosis and may provide novel therapeutic opportunities in cancer and tissue degeneration pathologies.
Asunto(s)
Ferroptosis/efectos de los fármacos , Quelantes del Hierro/química , Quelantes del Hierro/farmacología , Timosina/química , Timosina/farmacología , Secuencia de Aminoácidos , Ferroptosis/genética , Expresión Génica , Humanos , Enlace de Hidrógeno , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Análisis Espectral , Relación Estructura-Actividad , Timosina/genéticaRESUMEN
Nuclear magnetic resonance (NMR)-based metabolomics has witnessed rapid advancements in recent years with the continuous development of new methods to enhance the sensitivity, resolution, and speed of data acquisition. Some of the approaches were earlier used for peptide and protein resonance assignments and have now been adapted to metabolomics. At the same time, new NMR methods involving novel data acquisition techniques, suited particularly for high-throughput analysis in metabolomics, have been developed. In this review, we focus on the different sampling strategies or data acquisition methods that have been developed in our laboratory and other groups to acquire NMR spectra rapidly with high sensitivity and resolution for metabolomics. In particular, we focus on the use of multiple receivers, phase modulation NMR spectroscopy, and fast-pulsing methods for identification and assignments of metabolites.
Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Metabolómica/tendenciasRESUMEN
Studying disease models at the molecular level is vital for drug development in order to improve treatment and prevent a wide range of human pathologies. Microbial infections are still a major challenge because pathogens rapidly and continually evolve developing drug resistance. Cancer cells also change genetically, and current therapeutic techniques may be (or may become) ineffective in many cases. The pathology of many neurological diseases remains an enigma, and the exact etiology and underlying mechanisms are still largely unknown. Viral infections spread and develop much more quickly than does the corresponding research needed to prevent and combat these infections; the present and most relevant outbreak of SARS-CoV-2, which originated in Wuhan, China, illustrates the critical and immediate need to improve drug design and development techniques. Modern day drug discovery is a time-consuming, expensive process. Each new drug takes in excess of 10 years to develop and costs on average more than a billion US dollars. This demonstrates the need of a complete redesign or novel strategies. Nuclear Magnetic Resonance (NMR) has played a critical role in drug discovery ever since its introduction several decades ago. In just three decades, NMR has become a "gold standard" platform technology in medical and pharmacology studies. In this review, we present the major applications of NMR spectroscopy in medical drug discovery and development. The basic concepts, theories, and applications of the most commonly used NMR techniques are presented. We also summarize the advantages and limitations of the primary NMR methods in drug development.
Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas/métodos , Espectroscopía de Resonancia Magnética/métodos , HumanosRESUMEN
Spin noise spectroscopy has attracted considerable attention recently owing partly to intrinsic interest in the phenomenon and partly to its significant application potential. Here, we address the inherent problem of low sensitivity of nuclear spin noise and examine the utility of wavelet transform to mitigate this problem by distinguishing real peaks from the noise contaminated data. Suppression of the random circuit noise and the consequent enhancement of the correlated nuclear spin noise signal have been demonstrated with discrete wavelet transform. Spectra of both 1 H and 13 C nuclear spins have been considered and significant signal enhancements in both the cases have been observed. A detailed analysis of several possible wavelet, thresholding and decomposition solutions have been made to obtain the optimum condition for signal enhancement. It is observed that the application of wavelet transform leaves the spin noise signal line shape essentially unchanged, which is an advantage for several applications involving spin noise spectra.
RESUMEN
A major breakthrough in speed and sensitivity of 2 D spin-noise-detected NMR is achieved owing to a new acquisition and processing scheme called "double block usage" (DBU) that utilizes each recorded noise block in two independent cross-correlations. The mixing, evolution, and acquisition periods are repeated head-to-tail without any recovery delays and well-known building blocks of multidimensional NMR (constant-time evolution and quadrature detection in the indirect dimension as well as pulsed field gradients) provide further enhancement and artifact suppression. Modified timing of the receiver electronics eliminates spurious random excitation. We achieve a threefold sensitivity increase over the original snHMQC (spin-noise-detected heteronuclear multiple quantum correlation) experiment (K. Chandra etâ al., J. Phys. Chem. Lett. 2013, 4, 3853) and demonstrate the feasibility of spin-noise-detected long-range correlation.
RESUMEN
Nuclear magnetic resonance (NMR)-based metabolomics relies mostly on 1D NMR; however, the technique is limited by overlap of the signals from the metabolites. In order to circumvent this problem, 2D 1H-13C correlation spectroscopy techniques are often used. However owing to poorer natural abundance and gyromagnetic ratio of 13C, the acquisition time for 2D 1H-13C heteronuclear single quantum coherence spectroscopy (HSQC) is long. This makes it almost impossible to be used in high throughput study. We have reported the application of selective optimized flip angle short transient (SOFAST) technique coupled to heteronuclear multiple quantum correlation (HMQC) along with nonlinear sampling (NUS) in urine and serum samples. This technique takes sevenfold less experimental time than the conventional 1H-13C HSQC experiment with retention of almost all molecular information. Hence, this can be used for high throughput study. Graphical abstract SOFAST-HMQC is a two-dimensional NMR technique that significantly decreases experimental time without loss of information. This technique is applied in complex biofluid samples that are used for high throughput metabolomics studies and shows promise of better information recovery than conventional two-dimensional NMR technique in shorter time.
Asunto(s)
Análisis Químico de la Sangre/métodos , Espectroscopía de Resonancia Magnética , Metabolómica/métodos , Urinálisis/métodos , Humanos , Metabolómica/instrumentación , Factores de TiempoRESUMEN
Many members of the neuronal calcium sensor (NCS) protein family have a striking coexistence of two characteristics, that is, N-myristoylation and the cryptic EF-1 motif. We investigated the rationale behind this correlation in neuronal calcium sensor-1 (NCS-1) by restoring Ca(2+) binding ability of the disabled EF-1 loop by appropriate mutations. The concurrence of canonical EF-1 and N-myristoylation considerably decreased the overall Ca(2+) affinity, conformational flexibility, and functional activation of downstream effecter molecules (i.e., PI4Kß). Of a particular note, Ca(2+) induced conformational change (which is the first premise for a CaBP to be considered as sensor) is considerably reduced in myristoylated proteins in which Ca(2+)-binding to EF-1 is restored. Moreover, Ca(2+), which otherwise augments the enzymatic activity of PI4Kß (modulated by NCS-1), leads to a further decline in the modulated PI4Kß activity by myristoylated mutants (with canonical EF-1) pointing toward a loss of Ca(2+) signaling and specificity at the structural as well as functional levels. This study establishes the presence of the strong liaison between myristoylation and cryptic EF-1 in NCS-1. Breaking this liaison results in the failure of Ca(2+) specific signal transduction to downstream effecter molecules despite Ca(2+) binding. Thus, the EF-1 disability is a prerequisite in order to append myristoylation signaling while preserving structural robustness and Ca(2+) sensitivity/specificity in NCS-1.
Asunto(s)
Calcio/metabolismo , Ácidos Mirísticos/metabolismo , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/metabolismo , Secuencias de Aminoácidos/fisiología , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Proteínas Sensoras del Calcio Neuronal/genética , Neuropéptidos/genética , Unión Proteica/fisiologíaRESUMEN
The extrinsic proteins of photosystem II of higher plants and green algae PsbO, PsbP, PsbQ, and PsbR are essential for stable oxygen production in the oxygen evolving center. In the available X-ray crystallographic structure of higher plant PsbQ residues S14-Y33 are missing. Building on the backbone NMR assignment of PsbQ, which includes this "missing link", we report the extended resonance assignment including side chain atoms. Based on nuclear Overhauser effect spectra a high resolution solution structure of PsbQ with a backbone RMSD of 0.81 Å was obtained from torsion angle dynamics. Within the N-terminal residues 1-45 the solution structure deviates significantly from the X-ray crystallographic one, while the four-helix bundle core found previously is confirmed. A short α-helix is observed in the solution structure at the location where a ß-strand had been proposed in the earlier crystallographic study. NMR relaxation data and unrestrained molecular dynamics simulations corroborate that the N-terminal region behaves as a flexible tail with a persistent short local helical secondary structure, while no indications of forming a ß-strand are found.
Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Complejo de Proteína del Fotosistema II/química , Proteínas de Plantas/química , Estructura Secundaria de Proteína , Secuencia de Aminoácidos , Cristalografía por Rayos X , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Soluciones , Spinacia oleracea/genética , Spinacia oleracea/metabolismo , TermodinámicaRESUMEN
Branched Chain Amino Acids (BCAAs) are related to different aspects of diseases like pathogenesis, diagnosis and even prognosis. While in some diseases, levels of all the BCAAs are perturbed; in some cases, perturbation occurs in one or two while the rest remain unaltered. In case of ischemic heart disease, there is an enhanced level of plasma leucine and isoleucine but valine level remains unaltered. In 'Hypervalinemia', valine is elevated in serum and urine, but not leucine and isoleucine. Therefore, identification of these metabolites and profiling of individual BCAA in a quantitative manner in body-fluid like blood plasma/serum have long been in demand. (1)H NMR resonances of the BCAAs overlap with each other which complicates quantification of individual BCAAs. Further, the situation is limited by the overlap of broad resonances of lipoprotein with the resonances of BCAAs. The widely used commercially available kits cannot differentially estimate the BCAAs. Here, we have achieved proper identification and characterization of these BCAAs in serum in a quantitative manner employing a Nuclear Magnetic Resonance-based technique namely T2-edited Correlation Spectroscopy (COSY). This approach can easily be extended to other body fluids like bile, follicular fluids, saliva, etc.
Asunto(s)
Aminoácidos de Cadena Ramificada/sangre , Imagen por Resonancia Magnética/métodos , Metabolómica/métodos , Animales , Femenino , Ratones , Ratones Endogámicos C57BLRESUMEN
An NMR-based approach for rapid characterization of translational diffusion of molecules has been developed. Unlike the conventional method of acquiring a series of 2D (13)C and (1)H spectra, the proposed approach involves a single 2D NMR spectrum, which can be acquired in minutes. Using this method, it was possible to detect the presence of intermediate oligomeric species of diphenylalanine in solution during the process of its self-assembly to form nanotubular structures.
RESUMEN
Human amylin (hIAPP) is found in the form of amyloid deposits within the pancreatic cells of nearly all patients diagnosed with type 2 diabetes mellitus (T2DM). However, rat amylin (rIAPP) and pramlintide - hIAPP analogs - are both non-toxic and non-amyloidogenic. Their primary sequences exhibit only slight variations in a few amino acid residues, primarily concentrated in the central region, spanning residues 20 to 29. This inspired us to study this fragment and investigate the impact on the aggregation properties of substituting residues within the central region of amylin and its analogs. Six fragments derived from amylin have undergone comprehensive testing against various metal ions by implementing a range of analytical techniques, including Nuclear Magnetic Resonance (NMR) spectroscopy, Thioflavin T (ThT) assays, Atomic Force Microscopy (AFM), and cytotoxicity assays. These methodologies serve to provide a thorough understanding of how the substitutions and interactions with metal ions impact the aggregation behavior of amylin and its analogs.
RESUMEN
Kinetics and thermodynamics of amide hydrogen exchange in proteins can be investigated with two-dimensional (13)CO-(15)N NMR correlation experiments. The spectra are acquired with high resolution and sensitivity. A single type of experiment on one sample serves to characterize hydrogen-deuterium fractionation factors and hydrogen-exchange rates that span three orders of magnitude.
Asunto(s)
Hidrógeno/química , Proteínas/química , Amidas/química , Amidas/metabolismo , Hidrógeno/metabolismo , Cinética , Modelos Moleculares , Pliegue de Proteína , Proteínas/metabolismo , Termodinámica , Ubiquitina/química , Ubiquitina/metabolismoRESUMEN
Since ancient times, the inhabitants of dry areas have depended on the date palm (Phoenix dactylifera L.) as a staple food and means of economic security. For example, dates have been a staple diet for the inhabitants of the Arabian Peninsula and Sahara Desert in North Africa for millennia and the local culture is rich in knowledge and experience with the benefits of dates, suggesting that dates contain many substances essential for the human body. Madinah dates are considered one of the most important types of dates in the Arabian Peninsula, with Ajwa being one of the most famous types and grown only in Madinah, Saudi Arabia. Date seeds are traditionally used for animal feed, seed oil production, cosmetics, and as a coffee substitute. Phytochemical compounds that have been detected in date fruits and date seeds include phenolic acids, carotenoids, and flavonoids. Phenolic acids are the most prevalent bioactive constituents that contribute to the antioxidant activity of date fruits. The bioactive properties of these phytochemicals are believed to promote human health by reducing the risk of diseases such as chronic inflammation. Ajwa dates especially are thought to have superior bioactivity properties. To investigate these claims, in this study, we compare the metabolic profiles of Ajwa with different types of dates collected from Saudi Arabia and Tunisia. We show by UHPLC-MS that date seeds contain several classes of flavonoids, phenolic acids, and amino acid derivatives, including citric acid, malic acid, lactic acid, and hydroxyadipic acid. Additionally, GC-MS profiling showed that date seeds are richer in metabolite classes, such as hydrocinnamic acids (caffeic, ferulic and sinapic acids), than flesh samples. Deglet N fruit extract (minimum inhibitory concentration: 27 MIC/µM) and Sukkari fruit extract (IC50: 479 ± 0.58µg /mL) have higher levels of antibacterial and antioxidative activity than Ajwa fruits. However, the seed analysis showed that seed extracts have better bioactivity effects than fruit extracts. Specifically, Ajwa extract showed the best MIC and strongest ABTS radical-scavenging activity among examined seed extracts (minimum inhibitory concentration: 20 µM; IC50: 54 ± 3.61µg /mL). Our assays are a starting point for more advanced in vitro antibacterial models and investigation into the specific molecules that are responsible for the antioxidative and anti-bacterial activities of dates.
RESUMEN
The folding and unfolding of structurally similar proteins belonging to a family have long been a focus of investigation of the structure-(un)folding relationship. Such studies are yet to reach a consensus about whether structurally similar domains follow common or different unfolding pathways. Members of the ßγ-crystallin superfamily, which consists of structurally similar proteins with limited sequence similarity from diverse life forms spanning microbes to mammals, form an appropriate model system for exploring this relationship further. We selected a new member, Crybg3_D3, the third ßγ-crystallin domain of non-lens vertebrate protein Crybg3 from mouse brain. The crystal structure determined at 1.86 Å demonstrates that the ßγ-crystallin domain of Crybg3 resembles more closely the lens ßγ-crystallins than the microbial crystallins do. However, interestingly, this structural cousin follows a quite distinct (un)folding pathway via formation of an intermediate state. The intermediate species is in a nativelike conformation with variation in flexibility and tends to form insoluble aggregates. The individual domains of lens ßγ-crystallins (and microbial homologues) do not follow such an unfolding pattern. Thus, even the closest members of a subfamily within a superfamily do not necessarily follow similar unfolding paths, suggesting the divergence acquired by these domains, which could be observed only by unfolding. Additionally, this study provides insights into the modifications that this domain has undergone during its recruitment into the non-lens tissues in vertebrates.
Asunto(s)
Cristalinas/química , Desplegamiento Proteico , Secuencia de Aminoácidos , Animales , Química Encefálica , Cristalografía por Rayos X , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Alineación de SecuenciaRESUMEN
Information on the low-energy excited states of a given protein is important as this controls the structural adaptability and various biological functions of proteins such as co-operativity, response towards various external perturbations. In this article, we characterized individual residues in both non-myristoylated (non-myr) and myristoylated (myr) neuronal calcium sensor-1 (NCS-1) that access alternate states by measuring nonlinear temperature dependence of the backbone amide-proton (¹H(N)) chemical shifts. We found that ~20% of the residues in the protein access alternative conformations in non-myr case, which increases to ~28% for myr NCS-1. These residues are spread over the entire polypeptide stretch and include the edges of α-helices and ß-strands, flexible loop regions, and the Ca²(+)-binding loops. Besides, residues responsible for the absence of Ca²(+)-myristoyl switch are also found accessing alternative states. The C-terminal domain is more populated with these residues compared to its N-terminal counterpart. Individual EF-hands in NCS-1 show significantly different number of alternate states. This observation prompts us to conclude that this may lead to differences in their individual conformational flexibility and has implications on the functionality. Theoretical simulations reveal that these low-energy excited states are within an energy band of 2-4 kcal/mol with respect to the native state.
Asunto(s)
Proteínas Sensoras del Calcio Neuronal/química , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/química , Neuropéptidos/metabolismo , Secuencia de Aminoácidos , Animales , Motivos EF Hand , Técnicas In Vitro , Modelos Moleculares , Datos de Secuencia Molecular , Ácidos Mirísticos/química , Ácidos Mirísticos/metabolismo , Proteínas Sensoras del Calcio Neuronal/genética , Neuropéptidos/genética , Dinámicas no Lineales , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Protones , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Temperatura , TermodinámicaRESUMEN
We present reduced dimensionality (RD) 3D HN(CA)NH for efficient sequential assignment in proteins. The experiment correlates the (15)N and (1)H chemical shift of a residue ('i') with those of its immediate N-terminal (i - 1) and C-terminal (i + 1) neighbors and provides four-dimensional chemical shift correlations rapidly with high resolution. An assignment strategy is presented which combines the correlations observed in this experiment with amino acid type information obtained from 3D CBCA(CO)NH. By classifying the 20 amino acid types into seven distinct categories based on (13)C(ß) chemical shifts, it is observed that a stretch of five sequentially connected residues is sufficient to map uniquely on to the polypeptide for sequence specific resonance assignments. This method is exemplified by application to three different systems: maltose binding protein (42 kDa), intrinsically disordered domain of insulin-like growth factor binding protein-2 and Ubiquitin. Fast data acquisition is demonstrated using longitudinal (1)H relaxation optimization. Overall, 3D HN(CA)NH is a powerful tool for high throughput resonance assignment, in particular for unfolded or intrinsically disordered polypeptides.
Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Aminoácidos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/química , Proteínas de Unión a Maltosa/química , Modelos Estadísticos , Proteínas Recombinantes/química , Ubiquitina/químicaRESUMEN
Human serum albumin (HSA) is the main zinc(II) carrier in blood plasma. The HSA site with the strongest affinity for zinc(II), multi-metal binding site A, is disrupted by the presence of fatty acids (FAs). Therefore, the FA concentration in the blood influences zinc distribution, which may affect both normal physiological processes and a range of diseases. Based on the current knowledge of HSA's structure and its coordination chemistry with zinc(II), we investigated zinc interactions and the effect of various FAs, including lipoic acid (LA), on the protein structure, stability, and zinc(II) binding. We combined NMR experiments and isothermal titration calorimetry to examine zinc(II) binding to HSA at a sub-atomic level in a quantitative manner as well as the effect of FAs. Free HSA results indicate the existence of one high-affinity zinc(II) binding site and multiple low-affinity sites. Upon the binding of FAs to HSA, we observed a range of behaviors in terms of zinc(II) affinity, depending on the type of FA. With FAs that disrupt zinc binding, the addition of LA restores HSA's affinity for zinc ions to the levels seen with free defatted HSA, indicating the possible mechanism of LA, which is effective in the treatment of diabetes and cardiovascular diseases.
RESUMEN
Neuronal calcium sensor-1 (NCS-1) interacts with many membranes and cytosolic proteins, both in a Ca(2+)-dependent and in a Ca(2+)-independent manner, and its physiological role is governed by its N-terminal myristoylation. To understand the role of myristoylation in altering Ca(2+) response and other basic biophysical properties, we have characterized the Ca(2+) filling pathways in both myristoylated (myr) and non-myristoylated (non-myr) forms of NCS-1. We have observed that Ca(2+) binds simultaneously to all three active EF-hands in non-myr NCS-1, whereas in the case of myr NCS-1, the process is sequential, where the second EF-hand is filled first, followed by the third and fourth EF-hands. In the case of myr NCS-1, the observed sequential Ca(2+) binding process becomes more prominent in the presence of Mg(2+). Besides, the analysis of (15)N-relaxation data reveals that non-myr NCS-1 is more dynamic than myr NCS-1. The overall molecular tumbling correlation time increases by approximately 20% upon myristoylation. Comparing the apo forms of non-myr NCS-1 and myr NCS-1, we found the possibility of existence of some substates, which are structurally closer to the holo form of the protein. There are more such substates in the case of non-myr NCS-1 than in the case of the myr NCS-1, suggesting that the former accesses larger volumes of conformational substates compared with the latter. Further, the study reveals that the possibility of Ca(2+) binding simultaneously to different parts of the protein is more favourable in non-myr NCS-1 than in myr NCS-1.
Asunto(s)
Calcio/metabolismo , Ácido Mirístico/metabolismo , Proteínas Sensoras del Calcio Neuronal/metabolismo , Calcio/química , Modelos Moleculares , Proteínas Sensoras del Calcio Neuronal/química , Resonancia Magnética Nuclear Biomolecular , Teoría CuánticaRESUMEN
Here, we implemented and validated a suite of selective and non-selective CPMG-filtered 1D and 2D TOCSY/HSQC experiments for metabolomics research. They facilitated the unambiguous identification of metabolites embedded in broad lipid and protein signals. The 2D spectra improved non-targeted analysis by removing the background broad signals of macromolecules.
Asunto(s)
Metabolómica , Espectroscopía de Resonancia MagnéticaRESUMEN
NMR-based metabolomics, which emerged along with mass spectrometry techniques, is the preferred method for studying metabolites in medical research and food industries. However, NMR techniques suffer from inherently low sensitivity, regardless of their superior reproducibility. To overcome this, we made two beneficial modifications: we detuned the probe to reach a position called "Spin Noise Tuning Optimum" (SNTO), and we replaced the conventional cylindrical 5 mm NMR tube with an electric field component-optimized shaped tube. We found that concerted use of both modifications can increase the sensitivity (signal to noise ratio per unit volume) and detection of metabolites and decrease the measurement time by order of magnitude. In this study, we demonstrate and discuss the achieved signal enhancement of metabolites on model non-human (bovine serum, amino acid standard mixture) and human urine samples.