Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
STAR Protoc ; 4(3): 102367, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37339049

RESUMEN

Mapping cranial vasculature and adjacent neurovascular interfaces in their entirety will enhance our understanding of central nervous system function in any physiologic state. We present a workflow to visualize in situ murine vasculature and surrounding cranial structures using terminal polymer casting of vessels, iterative sample processing and image acquisition, and automated image registration and processing. While this method does not obtain dynamic imaging due to mouse sacrifice, these studies can be performed before sacrifice and processed with other acquired images. For complete details on the use and execution of this protocol, please refer to Rosenblum et al.1.


Asunto(s)
Cráneo , Animales , Ratones , Flujo de Trabajo
2.
Cell Rep Methods ; 2(1)2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35373177

RESUMEN

Understanding physiologic and pathologic central nervous system function depends on our ability to map the entire in situ cranial vasculature and neurovascular interfaces. To accomplish this, we developed a non-invasive workflow to visualize murine cranial vasculature via polymer casting of vessels, iterative sample processing and micro-computed tomography, and automatic deformable image registration, feature extraction, and visualization. This methodology is applicable to any tissue and allows rapid exploration of normal and altered pathologic states.


Asunto(s)
Sistema Cardiovascular , Ratones , Animales , Microtomografía por Rayos X/métodos , Cráneo/diagnóstico por imagen
3.
Front Neurol ; 12: 699674, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335453

RESUMEN

The inner ear is a complex organ housed within the petrous bone of the skull. Its intimate relationship with the brain enables the transmission of auditory and vestibular signals via cranial nerves. Development of this structure from neural crest begins in utero and continues into early adulthood. However, the anatomy of the murine inner ear has only been well-characterized from early embryogenesis to post-natal day 6. Inner ear and skull base development continue into the post-natal period in mice and early adulthood in humans. Traditional methods used to evaluate the inner ear in animal models, such as histologic sectioning or paint-fill and corrosion, cannot visualize this complex anatomy in situ. Further, as the petrous bone ossifies in the postnatal period, these traditional techniques become increasingly difficult. Advances in modern imaging, including high resolution Micro-CT and MRI, now allow for 3D visualization of the in situ anatomy of organs such as the inner ear. Here, we present a longitudinal atlas of the murine inner ear using high resolution ex vivo Micro-CT and MRI.

4.
JCI Insight ; 6(21)2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34546977

RESUMEN

We recently described a transtentorial venous system (TTVS), which to our knowledge was previously unknown, connecting venous drainage throughout the brain in humans. Prior to this finding, it was believed that the embryologic tentorial plexus regresses, resulting in a largely avascular tentorium. Our finding contradicted this understanding and necessitated further investigation into the development of the TTVS. Herein, we sought to investigate mice as a model to study the development of this system. First, using vascular casting and ex vivo micro-CT, we demonstrated that this TTVS is conserved in adult mice. Next, using high-resolution MRI, we identified the primitive tentorial venous plexus in the murine embryo at day 14.5. We also found that, at this embryologic stage, the tentorial plexus drains the choroid plexus. Finally, using vascular casting and micro-CT, we found that the TTVS is the dominant venous drainage in the early postnatal period (P8). Herein, we demonstrated that the TTVS is conserved between mice and humans, and we present a longitudinal study of its development. In addition, our findings establish mice as a translational model for further study of this system and its relationship to intracranial physiology.


Asunto(s)
Venas/anatomía & histología , Venas/diagnóstico por imagen , Animales , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA