Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(2): 105643, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199574

RESUMEN

Intestinal epithelia express two long myosin light-chain kinase (MLCK) splice variants, MLCK1 and MLCK2, which differ by the absence of a complete immunoglobulin (Ig)-like domain 3 within MLCK2. MLCK1 is preferentially associated with the perijunctional actomyosin ring at steady state, and this localization is enhanced by inflammatory stimuli including tumor necrosis factor (TNF). Here, we sought to identify MLCK1 domains that direct perijunctional MLCK1 localization and their relevance to disease. Ileal biopsies from Crohn's disease patients demonstrated preferential increases in MLCK1 expression and perijunctional localization relative to healthy controls. In contrast to MLCK1, MLCK2 expressed in intestinal epithelia is predominantly associated with basal stress fibers, and the two isoforms have distinct effects on epithelial migration and barrier regulation. MLCK1(Ig1-4) and MLCK1(Ig1-3), but not MLCK2(Ig1-4) or MLCK1(Ig3), directly bind to F-actin in vitro and direct perijunctional recruitment in intestinal epithelial cells. Further study showed that Ig1 is unnecessary, but that, like Ig3, the unstructured linker between Ig1 and Ig2 (Ig1/2us) is essential for recruitment. Despite being unable to bind F-actin or direct recruitment independently, Ig3 does have dominant negative functions that allow it to displace perijunctional MLCK1, increase steady-state barrier function, prevent TNF-induced MLCK1 recruitment, and attenuate TNF-induced barrier loss. These data define the minimal domain required for MLCK1 localization and provide mechanistic insight into the MLCK1 recruitment process. Overall, the results create a foundation for development of molecularly targeted therapies that target key domains to prevent MLCK1 recruitment, restore barrier function, and limit inflammatory bowel disease progression.


Asunto(s)
Actinas , Actomiosina , Humanos , Actinas/metabolismo , Actomiosina/metabolismo , Citocinesis , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Miosinas/metabolismo , Uniones Estrechas/metabolismo , Células CACO-2 , Factor de Necrosis Tumoral alfa/metabolismo
2.
Gut ; 72(5): 870-881, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35537812

RESUMEN

OBJECTIVE: Intestinal barrier loss is a Crohn's disease (CD) risk factor. This may be related to increased expression and enzymatic activation of myosin light chain kinase 1 (MLCK1), which increases intestinal paracellular permeability and correlates with CD severity. Moreover, preclinical studies have shown that MLCK1 recruitment to cell junctions is required for tumour necrosis factor (TNF)-induced barrier loss as well as experimental inflammatory bowel disease progression. We sought to define mechanisms of MLCK1 recruitment and to target this process pharmacologically. DESIGN: Protein interactions between FK506 binding protein 8 (FKBP8) and MLCK1 were assessed in vitro. Transgenic and knockout intestinal epithelial cell lines, human intestinal organoids, and mice were used as preclinical models. Discoveries were validated in biopsies from patients with CD and control subjects. RESULTS: MLCK1 interacted specifically with the tacrolimus-binding FKBP8 PPI domain. Knockout or dominant negative FKBP8 expression prevented TNF-induced MLCK1 recruitment and barrier loss in vitro. MLCK1-FKBP8 binding was blocked by tacrolimus, which reversed TNF-induced MLCK1-FKBP8 interactions, MLCK1 recruitment and barrier loss in vitro and in vivo. Biopsies of patient with CD demonstrated increased numbers of MLCK1-FKBP8 interactions at intercellular junctions relative to control subjects. CONCLUSION: Binding to FKBP8, which can be blocked by tacrolimus, is required for MLCK1 recruitment to intercellular junctions and downstream events leading to immune-mediated barrier loss. The observed increases in MLCK1 activity, MLCK1 localisation at cell junctions and perijunctional MLCK1-FKBP8 interactions in CD suggest that targeting this process may be therapeutic in human disease. These new insights into mechanisms of disease-associated barrier loss provide a critical foundation for therapeutic exploitation of FKBP8-MLCK1 interactions.


Asunto(s)
Enfermedad de Crohn , Animales , Humanos , Ratones , Células CACO-2 , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/metabolismo , Mucosa Intestinal/metabolismo , Ratones Noqueados , Quinasa de Cadena Ligera de Miosina/metabolismo , Tacrolimus/farmacología , Proteínas de Unión a Tacrolimus/metabolismo , Uniones Estrechas/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
3.
Lab Invest ; 103(4): 100036, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870290

RESUMEN

Environmental enteric dysfunction (EED) is characterized by malabsorption and diarrhea that result in irreversible deficits in physical and intellectual growth. We sought to define the expression of transport and tight junction proteins by quantitative analysis of duodenal biopsies from patients with EED. Biopsies from Pakistani children with confirmed EED diagnoses were compared to those from age-matched North American healthy controls, patients with celiac disease, and patients with nonceliac disease with villous atrophy or intraepithelial lymphocytosis. Expression of brush border digestive and transport proteins and paracellular (tight junction) proteins was assessed by quantitative multiplex immunofluorescence microscopy. EED was characterized by partial villous atrophy and marked intraepithelial lymphocytosis. Epithelial proliferation and enteroendocrine, tuft, and Paneth cell numbers were unchanged, but there was significant goblet cell expansion in EED biopsies. Expression of proteins involved in nutrient and water absorption and that of the basolateral Cl- transport protein NKCC1 were also increased in EED. Finally, the barrier-forming tight junction protein claudin-4 (CLDN4) was significantly upregulated in EED, particularly within villous enterocytes. In contrast, expression of CFTR, CLDN2, CLDN15, JAM-A, occludin, ZO-1, and E-cadherin was unchanged. Upregulation of a barrier-forming tight junction protein and brush border and basolateral membrane proteins that support nutrient and water transport in EED is paradoxical, as their increased expression would be expected to be correlated with increased intestinal barrier function and enhanced absorption, respectively. These data suggest that EED activates adaptive intestinal epithelial responses to enhance nutrient absorption but that these changes are insufficient to restore health.


Asunto(s)
Mucosa Intestinal , Linfocitosis , Niño , Humanos , Mucosa Intestinal/metabolismo , Linfocitosis/metabolismo , Linfocitosis/patología , Uniones Estrechas/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Atrofia/metabolismo , Atrofia/patología
4.
Nat Rev Gastroenterol Hepatol ; 20(7): 417-432, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37186118

RESUMEN

Epithelial tight junctions define the paracellular permeability of the intestinal barrier. Molecules can cross the tight junctions via two distinct size-selective and charge-selective paracellular pathways: the pore pathway and the leak pathway. These can be distinguished by their selectivities and differential regulation by immune cells. However, permeability increases measured in most studies are secondary to epithelial damage, which allows non-selective flux via the unrestricted pathway. Restoration of increased unrestricted pathway permeability requires mucosal healing. By contrast, tight junction barrier loss can be reversed by targeted interventions. Specific approaches are needed to restore pore pathway or leak pathway permeability increases. Recent studies have used preclinical disease models to demonstrate the potential of pore pathway or leak pathway barrier restoration in disease. In this Review, we focus on the two paracellular flux pathways that are dependent on the tight junction. We discuss the latest evidence that highlights tight junction components, structures and regulatory mechanisms, their impact on gut health and disease, and opportunities for therapeutic intervention.


Asunto(s)
Membrana Mucosa , Uniones Estrechas , Humanos , Uniones Estrechas/química , Uniones Estrechas/metabolismo , Permeabilidad , Mucosa Intestinal/metabolismo
5.
Methods Mol Biol ; 2367: 249-271, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33830456

RESUMEN

The intestinal barrier is an essential component of innate host defense. The single layer of epithelial cells that line the intestine must balance barrier function with both active, transcellular and diffusive, paracellular transport. Tight junctions, which link adjacent cells, form a selectively permeable seal that defines both paracellular transport and barrier properties. Molecules can cross tight junctions by either of two distinct routes, termed pore and the leak pathways, that differ in capacity, charge-selectivity, size-selectivity, and responses to physiological and pathophysiological stimuli. A third intestinal permeability route, the unrestricted pathway, reflects loss of the epithelial barrier, as occurs with mucosal damage, is independent of paracellular and transcellular pathways, and is neither charge- nor size-selective.The most commonly used approach for measuring intestinal permeability in vivo involves gavage of FITC-4 kDa dextran and analysis of the quantity recovered in serum. Unfortunately, this method cannot distinguish between leak and unrestricted pathways, as 4 kDa dextran can cross both. Moreover, 4 kDa dextran is too large to cross the pore pathway and, therefore, provides no information regarding this paracellular flux route. Here we describe a multiplex method that allows simultaneous, independent analysis of each pathway.


Asunto(s)
Uniones Estrechas , Claudinas , Dextranos , Mucosa Intestinal , Intestinos , Permeabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA