Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Curr Microbiol ; 78(2): 705-712, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33410957

RESUMEN

This study was conducted for the metagenomic analysis of stool samples from CRC affected individuals to identify biomarkers for CRC in Hainan, the only tropical island province of China. The gut microbiota of CRC patients differed significantly from that of healthy and reference database cohorts based on Aitchison distance and Bray-Cutis distance but there was no significant difference in alpha diversity. Furthermore, at the species level, 68 species were significantly altered including 37 CRC-enriched, such as, Fusobacterium nucleatum, Parvimonas micra, Gemella morbillorum, Citrobacter portucalensis, Alloprevotella sp., Shigella sonnei, Coriobacteriaceae bacterium, etc. Sixty-seven different metabolic pathways were acquired, and pathways involved in the synthesis of many amino acids were significantly declined. Besides, 2 identified antibiotic resistance genes performed well (area under the receive-operation curve AUC = 0.833, 95% CI 58.51-100%) compared with virulence factor genes. The results of the present study provide region-specific bacterial and functional biomarkers of gut microbiota for CRC patients in Hainan. Microbiota is considered as a non-invasive biomarker for the detection of CRC. Gut microbiota of different geographic regions should be further studied to expand the understanding of markers, especially for the China cohort due to diverse nationalities and lifestyles.


Asunto(s)
Neoplasias Colorrectales , Biomarcadores , China , Citrobacter , Firmicutes , Gemella , Humanos
2.
BMC Microbiol ; 20(1): 300, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33023493

RESUMEN

BACKGROUND: Numerous studies have reported the health-promoting effects of exopolysaccharides (EPSs) in in vitro models; however, a functional evaluation of EPSs will provide additional knowledge of EPS-microbe interactions by in vivo intestinal microbial model. In the present study, high-throughput amplicon sequencing, short-chain fatty acid (SCFAs) and intestinal inflammation evaluation were performed to explore the potential benefits of exopolysaccharides (EPSs) and EPS-producing Lactobacillus (HNUB20 group) using the healthy zebrafish (Danio rerio) model. RESULTS: The results based on microbial taxonomic analysis revealed that the abundance of four genera, Ochrobactrum, Sediminibacterium, Sphingomonas and Sphingobium, were increased in the control group in comparison to HNUB20 group. Pelomonas spp. levels were significantly higher and that of the genera Lactobacillus and Brachybacterium were significantly decreased in EPS group compared with control group. PICRUSt based functional prediction of gut microbiota metabolic pathways indicated that significantly lower abundance was found for transcription, and membrane transport, whereas folding, sorting and degradation and energy metabolism had significantly higher abundance after HNUB20 treatment. Two metabolic pathways, including metabolism and endocrine functions, were more abundant in the EPS group than control group. Similar to the HNUB20 group, transcription was also decreased in the EPS group compared with the control group. However, SCFAs and immune indexes indicated EPS and HNUB20 performed limited efficacy in the healthy zebrafish. CONCLUSIONS: The present intestinal microbial model-based study indicated that EPSs and high-yield EPS-producing Lactobacillus can shake the structure of intestinal microbiota, but cannot change SCFAs presence and intestinal inflammation.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Intestinos/microbiología , Lactobacillus/fisiología , Polisacáridos Bacterianos/farmacología , Pez Cebra/microbiología , Actinobacteria/fisiología , Animales , Bacteroidetes/fisiología , Comamonadaceae/fisiología , Ácidos Grasos Volátiles/metabolismo , Femenino , Masculino , Redes y Vías Metabólicas/genética , Ochrobactrum/fisiología , Polisacáridos Bacterianos/biosíntesis , Sphingomonadaceae/fisiología , Sphingomonas/fisiología , Transcripción Genética
3.
J Org Chem ; 83(1): 145-153, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29224341

RESUMEN

A simple and direct method for the iron(III) nitrate-mediated synthesis of isoxazoles from alkynes has been developed; both self-coupling and cross-coupling products could be successfully prepared from alkynes. Meanwhile, for the cross-coupling and cyclizing of two different alkynes examined, the iron-mediated system shows a good chemoselectivity for the synthesis of corresponding isoxazoles. In our method, cheap and eco-friendly iron(III) nitrate is used as the nitration and cyclization reagent, and KI is used as the additive; they both play a positive role in this transformation. Furthermore, a different mechanism for the formation of isoxazoles from alkynes has been proposed.

4.
J Nanosci Nanotechnol ; 18(1): 500-509, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29768875

RESUMEN

A novel chemically modified electrode was constructed in this study based on the carbon nanotubes-supported Pd nanoparticles (Pd/CNTs). It was demonstrated that the sensor could be used for the determination of dopamine (DA) and paracetamol (PA). The measurements were carried out through application of cyclic voltammetry (CV), differential pulse voltammetry (DPV) and amperometric i-t curve. Under optimum conditions and using the amperometric i-t curve method, the modified electrode provided linear response versus dopamine concentrations in the range of 0.3 × 10-6-5.0 × 10-5 M and PA concentrations in the range of 0.2 × 10-6-6.0 × 10-5 M, respectively. The detection limits for the DA and PA were 9.1 × 10-8 M and 8.9 × 10-8 M (S/N = 3), respectively. The sensitivities for of the electrode were 0.928 and 1.532 µA µM-1 cm-1, respectively.


Asunto(s)
Acetaminofén , Dopamina , Nanopartículas , Nanotubos de Carbono , Técnicas Electroquímicas , Electrodos
5.
Org Biomol Chem ; 14(41): 9814-9822, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27714226

RESUMEN

A simple base-mediated one-pot synthesis of 3,5-disubstituted 1,2,4-oxadiazoles from nitriles, aldehydes and hydroxylamine hydrochloride has been developed, in which the aldehydes act as both substrates and oxidants. The reactions include three sequential procedures: base-promoted intermolecular addition of hydroxylamine to nitrile to lead to amidoxime, treatment of the amidoxime with an aldehyde to form 4,5-dihydro-1,2,4-oxadiazole, and oxidization of the 4,5-dihydro-1,2,4-oxadiazole by using another aldehyde to afford 1,2,4-oxadiazole. This method represents a direct and simple protocol for the synthesis of 3,5-disubstituted 1,2,4-oxadiazoles.

6.
Appl Microbiol Biotechnol ; 99(13): 5639-46, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26025015

RESUMEN

DNA damage is the dominant source of mutation, which is the driving force of evolution. Therefore, it is important to quantitatively analyze the DNA damage caused by different mutagenesis methods, the subsequent mutation rates, and their relationship. Atmospheric and room temperature plasma (ARTP) mutagenesis has been used for the mutation breeding of more than 40 microorganisms. However, ARTP mutagenesis has not been quantitatively compared with conventional mutation methods. In this study, the umu test using a flow-cytometric analysis was developed to quantify the DNA damage in individual viable cells using Salmonella typhimurium NM2009 as the model strain and to determine the mutation rate. The newly developed method was used to evaluate four different mutagenesis systems: a new ARTP tool, ultraviolet radiation, 4-nitroquinoline-1-oxide (4-NQO), and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenesis. The mutation rate was proportional to the corresponding SOS response induced by DNA damage. ARTP caused greater DNA damage to individual living cells than the other conventional mutagenesis methods, and the mutation rate was also higher. By quantitatively comparing the DNA damage and consequent mutation rate after different types of mutagenesis, we have shown that ARTP is a potentially powerful mutagenesis tool with which to improve the characteristics of microbial cell factories.


Asunto(s)
Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Mutagénesis , Tasa de Mutación , Gases em Plasma , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/efectos de la radiación , Citometría de Flujo , Rayos Ultravioleta
7.
Sci Rep ; 14(1): 16759, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39033168

RESUMEN

Soil salinization poses a serious threat to crop growth. The selection of appropriate soil modifiers and water-soluble fertilizers for saline soils represents a crucial method for enhancing crop yields. The modifiers and medium-element water-soluble fertilizers were prepared using hydrochar derived from rice straw. Two distinct experiments were designed to study the effect of modifiers and water-soluble fertilizers on saline soils. The first experiment, designated as the "Soil Cultivation Experiment" , sought to investigate the impact of various modifiers on soil quality. The second experiment, designated as the "Method of Field Micro-Area Experiment", aimed to assess the influence of water-soluble fertilizers on saline soils. The results showed that the application of modifiers and water-soluble fertilizers significantly enhanced comprehensive soil physical and chemical properties, crop growth, soil enzyme activity, and other key indicators in saline and alkaline soils. The optimal dosage of the modifier was 20 g/kg, which reduced the pH value from 8.62 to 8.21 and the decreased alkalinity by 8.26%. Furthermore, their application effectively boosted nutrient levels, including organic matter, and increased soil enzyme activity. The biomass of alfalfa showed enhancements of 63.01% and 20.87% and the biomass of leymus chinensis increased by 29.39% and 9.02% for the two batches, respectively. Notably, the application of water-soluble fertilizer yielded achieved superior results. This study also provided a theoretical basis for their future application in soda saline-alkali soil.


Asunto(s)
Fertilizantes , Suelo , Fertilizantes/análisis , Suelo/química , Agua/química , Salinidad , Oryza/crecimiento & desarrollo , Solubilidad , Concentración de Iones de Hidrógeno , Biomasa , Productos Agrícolas/crecimiento & desarrollo , Agricultura/métodos , Medicago sativa/crecimiento & desarrollo
8.
PLoS One ; 19(2): e0299113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38422029

RESUMEN

Saline-alkali soil significantly impairs crop growth. This research employs the impacts of the modifier and water-soluble fertilizer, as well as their interaction, on the root systems of alfalfa and leymus chinensis in saline-alkali soil. The results exhibit that the hydrochar source modifier effectively enhances the root growth of both forage species. There are certain improvements in the root growth indicators of both crops at a dosage of 20 g/kg. Root enzyme activity and rhizosphere soil enzyme activity are enhanced in alfalfa, showing significant improvements in the first planting compared to the second planting. The application of water-soluble fertilizers also promotes root growth and root dehydrogenase activity. The root dehydrogenase activity of alfalfa and leymus chinensis are enhanced 62.18% and 10.15% in first planting than that of blank, respectively. Additionally, the two-factor variance analysis revealed a correlation between rhizosphere soil enzyme activity and changes in root traits. Higher rhizosphere soil enzyme activity is observed in conjunction with better root growth. The combined application of a modifier and water-soluble fertilizer has demonstrated a significant interaction effect on various aspects of the first planting of alfalfa and leymus chinensis. Moreover, the combined application of the modifier and water-soluble fertilizer has yielded superior results when compared to the individual application of either the modifier or the water-soluble fertilizer alone. This combined approach has proven effective in improving saline-alkali soil conditions and promoting crop growth in such challenging environments.


Asunto(s)
Álcalis , Fertilizantes , Intoxicación por Metales Pesados , Medicago sativa , Poaceae , Solución Salina , Suelo , Agua , Oxidorreductasas
9.
R Soc Open Sci ; 8(6): 202209, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34234952

RESUMEN

In this study, cornstalk was pyrolysed to obtain hydrochar (HC), which was used to remove mesotrione from aqueous solutions. HC characterization and batch experiments were conducted to investigate mesotrione adsorption and the underlying mechanism. The characterization revealed microspheres on the HC surface. FT-IR spectra showed that the HC contained a large number of -OH groups, C=C bonds of aromatic rings, C-H groups in aromatic rings and phenolic C-O bonds. The adsorption results showed that the mesotrione adsorption ability gradually increased as the HC preparation temperature increased. The quasi-second-order kinetic equation (R2 ≥ 0.9860, p < 0.05) agreed well with the mesotrione adsorption process. The maximum monolayer adsorption capacity, which was obtained at pH 7 and 45°C with HC prepared at 240°C, was 3181.7 mg kg-1 with the Langmuir isotherm model (R2 ≥ 0.9491, p < 0.05). Van der Waals and dipole forces and hydrogen bonds were inferred as the main adsorption mechanisms. HC has potential as an effective and energy-saving adsorbent for mesotrione to reduce environmental pollution.

10.
RSC Adv ; 11(25): 15369-15379, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35424044

RESUMEN

C/BiOBr composite materials were synthesized via a simple one-step solvothermal method, with C derived from biochar, which was prepared from the low-cost straw. The samples were characterized by SEM, XRD, XPS and PL. The 2% C/BiOBr composite material showed a noticeable adsorption and photocatalysis synergistic effect to remove CIP. The adsorption rate and degradation rate were 1.45 times and 1.8 times that of BiOBr. The adsorption kinetics and isotherms of CIP on C/BiOBr were analyzed with the pseudo-second-order kinetic and Langmuir models. The degradation efficiency was 96.8% after 60 min of irradiation. High stability and degradability were still maintained after four cycles. The Bi-O-C bond accelerated electron transition and inhibited the rapid photogenerated electron pair recombination. In the degradation process of CIP, ˙O2 - and h+ played a significant role. Experiments proved that C/BiOBr is practical and feasible for the degradation of CIP under the synergistic effect of adsorption and photocatalysis.

11.
Front Cell Dev Biol ; 9: 678190, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095150

RESUMEN

Melatonin has been widely used as a "probiotic agent" capable of producing strong neurotransmitter secretion regulatory effects, and the microbiota-gut-brain axis-related studies have also highlighted the role of the gut microbiota in neuromodulation. In the present study, a zebrafish neural hyperactivity model was established using caffeine induction to explore the regulatory effects of melatonin and probiotic on neurotransmitter secretion disorder in zebrafish. Disorders of brain neurotransmitter secretion (dopamine, γ-aminobutyric acid, and 5-hydroxytryptamine) caused by caffeine were improved after interference treatment with melatonin or probiotic. Shotgun metagenomic sequencing demonstrated that the melatonin-treated zebrafish gradually restored their normal intestinal microbiota and metabolic pathways. Germ-free (GF) zebrafish were used to verify the essential role of intestinal microbes in the regulation of neurotransmitter secretion. The results of the neurotransmitter and short-chain fatty acid determination revealed that the effect on the zebrafish in the GF group could not achieve that on the zebrafish in the melatonin group after adding the same dose of melatonin. The present research revealed the potential mode of action of melatonin through the microbiota-gut-brain axis to regulate the disruption of neurotransmitter secretion, supporting the future development of psychotropic drugs targeting the intestinal microbiota.

12.
Foods ; 10(6)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205515

RESUMEN

Approximately 17 million people suffer from cardiovascular diseases caused by hyperlipidemia, making it a serious global health concern. Among others, resistant starch (RS) has been widely used as a prebiotic in managing hyperlipidemia conditions. However, some studies have reported limited effects of RS on body weight and blood lipid profile of the host, suggesting further investigation on the synergistic effects of RS in combination with probiotics as gut microbes plays a role in lipid metabolism. This study evaluated the effects of jackfruit seed sourced resistant starch (JSRS) as a novel RS on mice gut microbes and hyperlipidemia by performing 16s rRNA and shotgun metagenomic sequencing. The results showed that 10% JSRS had a limited preventive effect on bodyweight and serum lipid levels. However, the JSRS promoted the growth of Bifidobacterium pseudolongum, which indicated the ability of B. pseudolongum for JSRS utilization. In the validation experiment, B. pseudolongum interacted with JSRS to significantly reduce bodyweight and serum lipid levels and had a therapeutic effect on hepatic steatosis in mice. Collectively, this study revealed the improvements of hyperlipidemia in mice by the synergistic effects of JSRS and B. pseudolongum, which will help in the development of "synbiotics" for the treatment of hyperlipidemia in the future.

13.
Commun Biol ; 4(1): 1046, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493790

RESUMEN

Graves' disease (GD) is an autoimmune disorder that frequently results in hyperthyroidism and other symptoms. Here, we designed a 6-month study with patients divided into three treatment groups, namely, methimazole (MI, n = 8), MI + black bean (n = 9) and MI + probiotic Bifidobacterium longum (n = 9), to evaluate the curative effects of probiotics supplied with MI on thyroid function of patients with GD through clinical index determination and intestinal microbiota metagenomic sequencing. Unsurprisingly, MI intake significantly improved several thyroid indexes but not the most important thyrotropin receptor antibody (TRAb), which is an indicator of the GD recurrence rate. Furthermore, we observed a dramatic response of indigenous microbiota to MI intake, which was reflected in the ecological and evolutionary scale of the intestinal microbiota. In contrast, we did not observe any significant changes in the microbiome in the MI + black bean group. Similarly, the clinical thyroid indexes of patients with GD in the probiotic supplied with MI treatment group continued to improve. Dramatically, the concentration of TRAb recovered to the healthy level. Further mechanistic exploration implied that the consumed probiotic regulated the intestinal microbiota and metabolites. These metabolites impacted neurotransmitter and blood trace elements through the gut-brain axis and gut-thyroid axis, which finally improved the host's thyroid function.


Asunto(s)
Antitiroideos/farmacología , Bifidobacterium longum/química , Enfermedad de Graves/tratamiento farmacológico , Metimazol/farmacología , Probióticos/farmacología , Glándula Tiroides/efectos de los fármacos , Adulto , Antitiroideos/administración & dosificación , Eje Cerebro-Intestino/efectos de los fármacos , Femenino , Humanos , Masculino , Metimazol/administración & dosificación , Persona de Mediana Edad , Probióticos/administración & dosificación
14.
Tree Physiol ; 41(1): 147-161, 2021 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-32857860

RESUMEN

As an important economic crop in tropical areas, Areca catechu L. affects the livelihood of millions of farmers. The Areca yellow leaf phenomenon (AYLP) leads to severe crop losses and plant death. To better understand the relationship of microbes and chlorotic Areca leaves, microbial community structure as well as its correlation with differential metabolites was investigated by high-throughput sequencing and metabolomic approaches. High-throughput sequencing of the internal transcribed spacer 1 and 16S rRNA gene revealed that fungal diversity was dominated by Ascomycota and the bacterial community consisted of Proteobacteria as well as Actinobacteria. The microbiota structure on chlorotic Areca leaves exhibited significant changes based on non-metric multidimensional scaling analysis, which were attributed to 477 bacterial genera and 183 fungal genera. According to the results of the Kruskal-Wallis test, several potential pathogens were enriched on chlorotic Areca leaves. Further analysis based on metabolic pathways predicted by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States revealed the metabolism of half-yellow leaves and yellow leaves microbiota were significantly elevated in amino acid metabolism, carbohydrate metabolism, glycan biosynthesis and metabolism, metabolism of cofactors and vitamins, partial xenobiotics biodegradation and metabolism. Furthermore, 22 significantly variable metabolites in Areca leaves were identified by ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry and statistical analysis. Moreover, we further investigated the correlation between the predominant microbes and differential metabolites. Taken together, the association between AYLP and microbiome of Areca leaves was explored from the microecological perspective by omics techniques, and these findings provide new insights into possible prevention, monitoring and control of AYLP in the future.


Asunto(s)
Areca , Microbiota , Metaboloma , Filogenia , Hojas de la Planta , ARN Ribosómico 16S/genética
15.
ISME J ; 15(11): 3399-3411, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34079079

RESUMEN

Graves' Disease is the most common organ-specific autoimmune disease and has been linked in small pilot studies to taxonomic markers within the gut microbiome. Important limitations of this work include small sample sizes and low-resolution taxonomic markers. Accordingly, we studied 162 gut microbiomes of mild and severe Graves' disease (GD) patients and healthy controls. Taxonomic and functional analyses based on metagenome-assembled genomes (MAGs) and MAG-annotated genes, together with predicted metabolic functions and metabolite profiles, revealed a well-defined network of MAGs, genes and clinical indexes separating healthy from GD subjects. A supervised classification model identified a combination of biomarkers including microbial species, MAGs, genes and SNPs, with predictive power superior to models from any single biomarker type (AUC = 0.98). Global, cross-disease multi-cohort analysis of gut microbiomes revealed high specificity of these GD biomarkers, notably discriminating against Parkinson's Disease, and suggesting that non-invasive stool-based diagnostics will be useful for these diseases.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Graves , Biomarcadores , Heces , Microbioma Gastrointestinal/genética , Humanos , Metagenoma
16.
RSC Adv ; 10(60): 36371-36377, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35517945

RESUMEN

Spherical Cu2O nanocrystals were synthesized and CeO2/Cu2O nanocomposites were successfully prepared from the spherical Cu2O nanocrystals. Characterization analysis was performed via scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible diffusion reflectance spectroscopy (DRS) studies. In comparison with the Cu2O nanocrystals, the CeO2/Cu2O nanocomposites exhibited high visible-light-induced photocatalytic activity for the degradation of methyl orange solution. Radical trapping experiments proved that photo-generated electrons played a very minor role, while photo-generated holes and superoxide radicals played a major role in the degradation process. The CeO2/Cu2O system could cause the internal energy band to bend, leading to the building of internal electric fields. The excited electrons and holes easily moved in opposite directions, promoting the effective separation of charges, which obviously enhanced the visible light photocatalytic activity of the catalyst.

17.
Food Res Int ; 136: 109496, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32846577

RESUMEN

Various factors, including those associated with the host and environment, should be considered to further explore the health-promoting effects of probiotics. However, it is important to consider persistence as a basic but crucial factor in the function of probiotics in the gut. To date, few studies have investigated the factors that influence probiotic persistence. To address these challenges, we designed a cohort experiment that included 49 subjects and used the probiotic Bifidobacterium lactis V9 to identify intestinal microbiota related to probiotic persistence based on high-throughput amplicon sequencing. All of the subjects were divided into three groups (Persisters, Temporary and Non-Persisters) according to the detected amount of viable Bifidobacterium lactis V9 in their faeces. Accordingly, the intestinal microbiota fluctuations in the Persisters group were significant and persistent, whereas those observed in the Non-Persisters group were limited. At the genus level, up to seven genera changed significantly in Persisters group, whereas only the genus Anaerobacterium changed significantly in Non-Persisters group throughout the experiment. At baseline, we observed highly distinct microbial alpha diversity and taxonomic features between the Persisters and Non-Persisters groups. A total of 12 genera were associated with probiotic persistence, with Bifidobacterium and eight other genera negatively associated with probiotic persistence and Anaerobacterium, Paraprevotella and Erysipelatoclostridium positively associated with probiotic persistence. Based on these potential biomarkers, an "Anti-Engraftment Index" (AEI) was derived to classify and predict probiotic persistence in test and validation cohorts with high accuracy. However, we also observed that the AEI did not work in other probiotic consumption experiments, indicating that the AEI was strain-specific.


Asunto(s)
Bifidobacterium animalis , Microbioma Gastrointestinal , Microbiota , Probióticos , Bifidobacterium , Humanos
18.
PLoS One ; 15(1): e0228496, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31999767

RESUMEN

Intestinal microbiota performed numerous important functions during digestion. The first filial generation (F1) hybrids of Hainan black goats and Saanen goats had different traits, black goats (BG) and white goats (WG), which also brought different production performance. We explored the difference of gut microbiota between black goats and white goats that both belonged to the first filial generation (F1) hybrids. In general, the alpha diversity of the black goat group was significantly higher than the white goat group. The species richness had no significant difference, while the species evenness of BG was higher than WG. Bacteroides, Oscillospira, Alistipes, Ruminococcus, Clostridium and Oscillibacter, as the core gut microbial genera, all had high abundance in BG and WG group. Only the Bacteroides and Bacteroidaceae 5-7N15 were the different genera between the BG and WG group, of which Bacteroides overlapped with the core genera and enriched in the WG group. Besides, PICRUSt analysis showed that there was a high abundance in the secondary metabolic pathways including membrane transport, replication and repair, carbohydrate metabolism and amino acid metabolism. We found the intestinal microbial species of black goats and white goats were very similar for living in the identical growing environment and feeding conditions, but there was still a slight difference in the content. On the one hand, it was proved that the small effect of genotype and the great effect of diet affected the intestinal microbiota together. On the other hand, it was also proved that these different traits of first filial generation (F1) hybrids may not related to gut microbiota and only because of different genotype. Moreover, characterization of the gut microbiota in BG and WG will be useful in goats gut microbiota research.


Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Ribosómico 16S/genética , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , ADN Ribosómico/genética , Cabras , Endogamia , Filogenia , Metabolismo Secundario , Análisis de Secuencia de ADN
19.
Gut Microbes ; 12(1): 1785252, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32663059

RESUMEN

The stable gut microbiome plays a key role in sustaining host health, while the instability of gut microbiome also has been found to be a risk factor of various metabolic diseases. At the ecological and evolutionary scales, the inevitable competition between the ingested probiotic and indigenous gut microbiome can lead to an increase in the instability. It remains largely unclear if and how exogenous prebiotic can improve the overall gut microbiome stability in probiotic consumption. In this study, we used Lactobacillus plantarum HNU082 (Lp082) as a model probiotic to examine the impact of the continuous or pulsed supplementation of galactooligosaccharide (GOS) on the gut microbiome stability in mice using shotgun metagenomic sequencing. Only continuous GOS supplement promoted the growth of probiotic and decreased its single-nucleotide polymorphisms (SNPs) mutation under competitive conditions. Besides, persistent GOS supplementation increased the overall stability, reshaped the probiotic competitive interactions with Bacteroides species in the indigenous microbiome, which was also evident by over-abundance of carbohydrate-active enzymes (CAZymes) accordingly. Also, we identified a total of 793 SNPs arisen in probiotic administration in the indigenous microbiome. Over 90% of them derived from Bacteroides species, which involved genes encoding transposase, CAZymes, and membrane proteins. However, neither GOS supplementation here de-escalated the overall adaptive mutations within the indigenous microbes during probiotic intake. Collectively, our study demonstrated the beneficial effect of continuous prebiotic supplementation on the ecological and genetic stability of gut microbiomes.


Asunto(s)
Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Oligosacáridos/farmacología , Probióticos/farmacología , Animales , Microbioma Gastrointestinal/genética , Glicósido Hidrolasas/genética , Lactobacillus plantarum/genética , Lactobacillus plantarum/crecimiento & desarrollo , Lactobacillus plantarum/metabolismo , Ratones , Mutación , Oligosacáridos/administración & dosificación , Oligosacáridos/metabolismo , Prebióticos/administración & dosificación , Probióticos/administración & dosificación
20.
Chemphyschem ; 10(3): 582-9, 2009 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-19156650

RESUMEN

CASPT2 (multiconfiguration second-order perturbation theory) calculations were performed at the molecular geometry for 17 low-lying singlet and triplet states of the NO(2)(+) ion. The CASPT2 vertical relative energies (T(v)') were obtained and the characters of these ionic states (primary or shake-up ionization states) were determined. For the eight low-lying states, we performed CASPT2 geometry optimization calculations and obtained the CASPT2 adiabatic relative energies (T(0)). We conclude that the 1(1)A(1), 1(3)B(2), 1(3)A(2), 1(1)A(2), 1(1)B(2), 1(3)A(1), 2(3)B(1), and 3(3)B(2) states of NO(2)(+) correspond to the X(1)Sigma(g)(+), a(3)B(2), b(3)A(2), A(1)A(2), B(1)B(2), c(3)A(1), d(3)B(1), and (3b(2))(-1) (3)B(2) states (the eight ionic states below 20 eV observed in the photoelectron spectra of Brundle et al.1 and Baltzer et al.2), respectively. The 1(1)A(1), 1(3)B(2), 1(3)A(2), 1(1)A(2), 1(1)B(2), 1(3)A(1), and 3(3)B(2) states are primary ionization states, and the CASPT2 T(v)' and T(0) values of these states are close to the corresponding experimental values from refs. [1] and [2]. The 2(3)B(1) state is not a typical primary ionization state, and the CASPT2 T(v)' and T(0) values for 2(3)B(1) are in reasonable agreement with the experimental values for d(3)B(1) from refs. [1] and [2] (the CASPT2 T(0) value for 1(3)B(1) is more than 2.5 eV smaller than the experimental values). Based on our CASPT2 T(0) calculations, we comment on the assignments of the d(3)A(1), C(1)B(1), and D(1)B(2) states below 20 eV observed by Jarvis et al. and on the MRCI T(0) values of Hirst for the 1(3)B(1), 1(1)B(1), and (3)A(1) states. On the basis of the CASPT2 potential energy curve (PEC) and CASSCF singlet/triplet minimum-energy crossing point (MECP) calculations, we reach the following conclusions concerning O-loss photodissociation from the X(1)Sigma(g)(+), a(3)B(2), b(3)A(2), A(1)A(2), and B(1)B(2) states, which are in line with the experimental facts. The adiabatic dissociation process of the X(1)Sigma(g) (+) state to the second limit [NO(+)(X(1)Sigma(+))+O((1)D)] cannot occur due to a high energy barrier (>5.0 eV) along the PEC, and the nonadiabitic process of X(1)Sigma(g)(+) to the first limit [NO(+)(X(1)Sigma(+))+O((3)P)] via the triplet states is unlikely since the MECPs lie very high above X(1)Sigma(g)(+). For the a(3)B(2) and b(3)A(2) states, adiabatic dissociation processes to the first limit may occur. Both the A(1)A(2) and B(1)B(2) states can undergo processes of predissociation to the first limit by a repulsive 2(3)A'' state, since the MECPs lie low above A(1)A(2) and B(1)B(2) and the calculated spin-orbit couplings at the MECPs are not small.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA