Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(7): 1261-1277.e9, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35305311

RESUMEN

The product of hexokinase (HK) enzymes, glucose-6-phosphate, can be metabolized through glycolysis or directed to alternative metabolic routes, such as the pentose phosphate pathway (PPP) to generate anabolic intermediates. HK1 contains an N-terminal mitochondrial binding domain (MBD), but its physiologic significance remains unclear. To elucidate the effect of HK1 mitochondrial dissociation on cellular metabolism, we generated mice lacking the HK1 MBD (ΔE1HK1). These mice produced a hyper-inflammatory response when challenged with lipopolysaccharide. Additionally, there was decreased glucose flux below the level of GAPDH and increased upstream flux through the PPP. The glycolytic block below GAPDH is mediated by the binding of cytosolic HK1 with S100A8/A9, resulting in GAPDH nitrosylation through iNOS. Additionally, human and mouse macrophages from conditions of low-grade inflammation, such as aging and diabetes, displayed increased cytosolic HK1 and reduced GAPDH activity. Our data indicate that HK1 mitochondrial binding alters glucose metabolism through regulation of GAPDH.


Asunto(s)
Glucosa , Hexoquinasa/metabolismo , Animales , Glucosa/metabolismo , Glucólisis , Hexoquinasa/genética , Ratones , Mitocondrias/metabolismo , Vía de Pentosa Fosfato
2.
Brain ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088003

RESUMEN

The clinical manifestations of sporadic amyotrophic lateral sclerosis (ALS) vary widely. However, the current classification of ALS is mainly based on clinical presentations, while the roles of electrophysiological and biomedical biomarkers remain limited. Herein, we investigated a group of patients with sporadic ALS and an ALS mouse model with superoxide dismutase 1 (SOD1)/G93A transgenes using nerve excitability tests (NET) to investigate axonal membrane properties and chemical precipitation, followed by enzyme-linked immunosorbent assay analysis to measure plasma misfolded protein levels. Six of 19 patients (31.6%) with sporadic ALS had elevated plasma misfolded SOD1 protein levels. In sporadic ALS patients, only those with elevated misfolded SOD1 protein levels showed an increased inward rectification in the current-threshold (I/V) curve and an increased threshold reduction in the hyperpolarizing threshold electrotonus (TE) in the NET study. Two familial ALS patients with SOD1 mutations also exhibited similar electrophysiological patterns of NET. For patients with sporadic ALS showing significantly increased inward rectification in the I/V curve, we noted an elevation in plasma misfolded SOD1 level, but not in total SOD1, misfolded C9orf72, or misfolded phosphorylated TDP43 levels. Computer simulations demonstrated that the aforementioned axonal excitability changes are likely associated with an increase in hyperpolarization-activated cyclic nucleotide-gated (HCN) current. In SOD1/G93A mice, NET also showed an increased inward rectification in the I/V curve, which could be reversed by a single injection of the HCN channel blocker, ZD7288. Daily treatment of SOD1/G93A mice with ZD7288 partially prevented the early motor function decline and spinal motor neuron death. In summary, sporadic ALS patients with elevated plasma misfolded SOD1 exhibited similar patterns of motor axonal excitability changes as familial ALS patients and ALS mice with mutant SOD1 genes, suggesting the existence of SOD1-associated sporadic ALS. The observed NET pattern of increased inward rectification in the I/V curve was attributable to an elevation in the HCN current in SOD1-associated ALS.

3.
Circulation ; 148(20): 1582-1592, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37721051

RESUMEN

BACKGROUND: Proper nuclear organization is critical for cardiomyocyte function, because global structural remodeling of nuclear morphology and chromatin structure underpins the development and progression of cardiovascular disease. Previous reports have implicated a role for DNA damage in cardiac hypertrophy; however, the mechanism for this process is not well delineated. AMPK (AMP-activated protein kinase) family of proteins regulates metabolism and DNA damage response (DDR). Here, we examine whether a member of this family, SNRK (SNF1-related kinase), which plays a role in cardiac metabolism, is also involved in hypertrophic remodeling through changes in DDR and structural properties of the nucleus. METHODS: We subjected cardiac-specific Snrk-/- mice to transaortic banding to assess the effect on cardiac function and DDR. In parallel, we modulated SNRK in vitro and assessed its effects on DDR and nuclear parameters. We also used phosphoproteomics to identify novel proteins that are phosphorylated by SNRK. Last, coimmunoprecipitation was used to verify Destrin (DSTN) as the binding partner of SNRK that modulates its effects on the nucleus and DDR. RESULTS: Cardiac-specific Snrk-/- mice display worse cardiac function and cardiac hypertrophy in response to transaortic banding, and an increase in DDR marker pH2AX (phospho-histone 2AX) in their hearts. In addition, in vitro Snrk knockdown results in increased DNA damage and chromatin compaction, along with alterations in nuclear flatness and 3-dimensional volume. Phosphoproteomic studies identified a novel SNRK target, DSTN, a member of F-actin depolymerizing factor proteins that directly bind to and depolymerize F-actin. SNRK binds to DSTN, and DSTN downregulation reverses excess DNA damage and changes in nuclear parameters, in addition to cellular hypertrophy, with SNRK knockdown. We also demonstrate that SNRK knockdown promotes excessive actin depolymerization, measured by the increased ratio of G-actin to F-actin. Last, jasplakinolide, a pharmacological stabilizer of F-actin, rescues the increased DNA damage and aberrant nuclear morphology in SNRK-downregulated cells. CONCLUSIONS: These results indicate that SNRK is a key player in cardiac hypertrophy and DNA damage through its interaction with DSTN. This interaction fine-tunes actin polymerization to reduce DDR and maintain proper cardiomyocyte nuclear shape and morphology.


Asunto(s)
Actinas , Cardiomegalia , Ratones , Animales , Actinas/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Miocitos Cardíacos/metabolismo , Daño del ADN , Cromatina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
4.
J Med Internet Res ; 26: e56144, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885499

RESUMEN

BACKGROUND: Human biological rhythms are commonly assessed through physical activity (PA) measurement, but mental activity may offer a more substantial reflection of human biological rhythms. OBJECTIVE: This study proposes a novel approach based on human-smartphone interaction to compute mental activity, encompassing general mental activity (GMA) and working mental activity (WMA). METHODS: A total of 24 health care professionals participated, wearing wrist actigraphy devices and using the "Staff Hours" app for more than 457 person-days, including 332 workdays and 125 nonworkdays. PA was measured using actigraphy, while GMA and WMA were assessed based on patterns of smartphone interactions. To model WMA, machine learning techniques such as extreme gradient boosting and convolutional neural networks were applied, using human-smartphone interaction patterns and GPS-defined work hours. The data were organized by date and divided into person-days, with an 80:20 split for training and testing data sets to minimize overfitting and maximize model robustness. The study also adopted the M10 metric to quantify daily activity levels by calculating the average acceleration during the 10-hour period of highest activity each day, which facilitated the assessment of the interrelations between PA, GMA, and WMA and sleep indicators. Phase differences, such as those between PA and GMA, were defined using a second-order Butterworth filter and Hilbert transform to extract and calculate circadian rhythms and instantaneous phases. This calculation involved subtracting the phase of the reference signal from that of the target signal and averaging these differences to provide a stable and clear measure of the phase relationship between the signals. Additionally, multilevel modeling explored associations between sleep indicators (total sleep time, midpoint of sleep) and next-day activity levels, accounting for the data's nested structure. RESULTS: Significant differences in activity levels were noted between workdays and nonworkdays, with WMA occurring approximately 1.08 hours earlier than PA during workdays (P<.001). Conversely, GMA was observed to commence about 1.22 hours later than PA (P<.001). Furthermore, a significant negative correlation was identified between the activity level of WMA and the previous night's midpoint of sleep (ß=-0.263, P<.001), indicating that later bedtimes and wake times were linked to reduced activity levels in WMA the following day. However, there was no significant correlation between WMA's activity levels and total sleep time. Similarly, no significant correlations were found between the activity levels of PA and GMA and sleep indicators from the previous night. CONCLUSIONS: This study significantly advances the understanding of human biological rhythms by developing and highlighting GMA and WMA as key indicators, derived from human-smartphone interactions. These findings offer novel insights into how mental activities, alongside PA, are intricately linked to sleep patterns, emphasizing the potential of GMA and WMA in behavioral and health studies.


Asunto(s)
Actigrafía , Ejercicio Físico , Teléfono Inteligente , Humanos , Ejercicio Físico/psicología , Actigrafía/instrumentación , Actigrafía/métodos , Adulto , Femenino , Masculino , Sueño/fisiología , Persona de Mediana Edad
5.
J Med Internet Res ; 26: e50149, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838328

RESUMEN

BACKGROUND: This study aimed to investigate the relationships between adiposity and circadian rhythm and compare the measurement of circadian rhythm using both actigraphy and a smartphone app that tracks human-smartphone interactions. OBJECTIVE: We hypothesized that the app-based measurement may provide more comprehensive information, including light-sensitive melatonin secretion and social rhythm, and have stronger correlations with adiposity indicators. METHODS: We enrolled a total of 78 participants (mean age 41.5, SD 9.9 years; 46/78, 59% women) from both an obesity outpatient clinic and a workplace health promotion program. All participants (n=29 with obesity, n=16 overweight, and n=33 controls) were required to wear a wrist actigraphy device and install the Rhythm app for a minimum of 4 weeks, contributing to a total of 2182 person-days of data collection. The Rhythm app estimates sleep and circadian rhythm indicators by tracking human-smartphone interactions, which correspond to actigraphy. We examined the correlations between adiposity indices and sleep and circadian rhythm indicators, including sleep time, chronotype, and regularity of circadian rhythm, while controlling for physical activity level, age, and gender. RESULTS: Sleep onset and wake time measurements did not differ significantly between the app and actigraphy; however, wake after sleep onset was longer (13.5, SD 19.5 minutes) with the app, resulting in a longer actigraphy-measured total sleep time (TST) of 20.2 (SD 66.7) minutes. The obesity group had a significantly longer TST with both methods. App-measured circadian rhythm indicators were significantly lower than their actigraphy-measured counterparts. The obesity group had significantly lower interdaily stability (IS) than the control group with both methods. The multivariable-adjusted model revealed a negative correlation between BMI and app-measured IS (P=.007). Body fat percentage (BF%) and visceral adipose tissue area (VAT) showed significant correlations with both app-measured IS and actigraphy-measured IS. The app-measured midpoint of sleep showed a positive correlation with both BF% and VAT. Actigraphy-measured TST exhibited a positive correlation with BMI, VAT, and BF%, while no significant correlation was found between app-measured TST and either BMI, VAT, or BF%. CONCLUSIONS: Our findings suggest that IS is strongly correlated with various adiposity indicators. Further exploration of the role of circadian rhythm, particularly measured through human-smartphone interactions, in obesity prevention could be warranted.


Asunto(s)
Actigrafía , Adiposidad , Algoritmos , Ritmo Circadiano , Teléfono Inteligente , Humanos , Femenino , Actigrafía/instrumentación , Actigrafía/métodos , Masculino , Adulto , Ritmo Circadiano/fisiología , Persona de Mediana Edad , Obesidad/fisiopatología , Aplicaciones Móviles , Sueño/fisiología
6.
J Med Internet Res ; 26: e49530, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963936

RESUMEN

BACKGROUND: Circadian rhythm disruptions are a common concern for poststroke patients undergoing rehabilitation and might negatively impact their functional outcomes. OBJECTIVE: Our research aimed to uncover unique patterns and disruptions specific to poststroke rehabilitation patients and identify potential differences in specific rest-activity rhythm indicators when compared to inpatient controls with non-brain-related lesions, such as patients with spinal cord injuries. METHODS: We obtained a 7-day recording with a wearable actigraphy device from 25 poststroke patients (n=9, 36% women; median age 56, IQR 46-71) and 25 age- and gender-matched inpatient control participants (n=15, 60% women; median age 57, IQR 46.5-68.5). To assess circadian rhythm, we used a nonparametric method to calculate key rest-activity rhythm indicators-relative amplitude, interdaily stability, and intradaily variability. Relative amplitude, quantifying rest-activity rhythm amplitude while considering daily variations and unbalanced amplitudes, was calculated as the ratio of the difference between the most active 10 continuous hours and the least active 5 continuous hours to the sum of these 10 and 5 continuous hours. We also examined the clinical correlations between rest-activity rhythm indicators and delirium screening tools, such as the 4 A's Test and the Barthel Index, which assess delirium and activities of daily living. RESULTS: Patients who had a stroke had higher least active 5-hour values compared to the control group (median 4.29, IQR 2.88-6.49 vs median 1.84, IQR 0.67-4.34; P=.008). The most active 10-hour values showed no significant differences between the groups (stroke group: median 38.92, IQR 14.60-40.87; control group: median 31.18, IQR 18.02-46.84; P=.93). The stroke group presented a lower relative amplitude compared to the control group (median 0.74, IQR 0.57-0.85 vs median 0.88, IQR 0.71-0.96; P=.009). Further analysis revealed no significant differences in other rest-activity rhythm metrics between the two groups. Among the patients who had a stroke, a negative correlation was observed between the 4 A's Test scores and relative amplitude (ρ=-0.41; P=.045). Across all participants, positive correlations emerged between the Barthel Index scores and both interdaily stability (ρ=0.34; P=.02) and the most active 10-hour value (ρ=0.42; P=.002). CONCLUSIONS: This study highlights the relevance of circadian rhythm disruptions in poststroke rehabilitation and provides insights into potential diagnostic and prognostic implications for rest-activity rhythm indicators as digital biomarkers.


Asunto(s)
Ritmo Circadiano , Descanso , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/complicaciones , Ritmo Circadiano/fisiología , Actigrafía/métodos , Estudios de Casos y Controles
7.
Curr Issues Mol Biol ; 45(6): 4908-4922, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37367061

RESUMEN

BACKGROUND/AIM: Colorectal cancer (CRC) is the third most common cancer with a high mortality rate worldwide. Although gallic acid and hesperidin exert anticancer activity, synergistic effects of gallic acid and hesperidin against CRC remain elusive. This study aims to investigate the therapeutic mechanism of a novel combination of gallic acid and hesperidin against CRC cell growth, including cell viability, cell-cycle-associated proteins, spheroid formation, and stemness. METHODS: Gallic acid and hesperidin derived from Hakka pomelo tea (HPT) were detected by colorimetric methods and high-performance liquid chromatography using ethyl acetate as an extraction medium. CRC cell lines (HT-29 and HCT-116) treated with the combined extract were investigated in our study for cell viability (trypan blue or soft agar colony formation assay), cell cycle (propidium iodide staining), cell-cycle-associated proteins (immunoblotting), and stem cell markers (immunohistochemistry staining). RESULTS: Compared with other extraction methods, HPT extraction using an ethyl acetate medium exerts the most potent effect on inhibiting HT-29 cell growth in a dose-dependent manner. Furthermore, the treatment with combined extract had a higher inhibitory effect on CRC cell viability than gallic acid or hesperidin alone. The underlying mechanism was involved in G1-phase arrest and Cip1/p21 upregulation that could attenuate HCT-116 cell proliferation (Ki-67), stemness (CD-133), and spheroid growth in a 3D formation assay mimicking in vivo tumorigenesis. CONCLUSION: Gallic acid and hesperidin exert synergistic effects on cell growth, spheroids, and stemness of CRC and may serve as a potential chemopreventive agent. Further testing for the safety and effectiveness of the combined extract in large-scale randomized trials is required.

8.
Opt Express ; 31(16): 26463-26473, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710507

RESUMEN

The enhancement in responsivity of photodiodes (PDs) or avalanche photodiodes (APDs) with the traditional flip-chip bonding package usually comes at the expense of degradation in the optical-to-electrical (O-E) bandwidth due to the increase of parasitic capacitance. In this work, we demonstrate backside-illuminated In0.52Al0.48As based APDs with novel flip-chip bonding packaging designed to relax this fundamental trade-off. The inductance induced peak in the measured O-E frequency response of these well-designed and well-packaged APDs, which can be observed around its 3-dB bandwidth (∼30 GHz), effectively widens the bandwidth and becomes more pronounced when the active diameter of the APD is aggressively downscaled to as small as 3 µm. With a typical active window diameter of 14 µm, large enough for alignment tolerance and low optical coupling loss, the packaged APD exhibits a moderate damping O-E frequency response with a bandwidth (36 vs. 31 GHz) and responsivity (3.4 vs. 2.3 A/W) superior to those of top-illuminated reference sample under 0.9 Vbr operation, to attain a high millimeter wave output power (0 dBm at 40 GHz) and output current (12.5 mA at +8.8 dBm optical power). The excellent static and dynamic performance of this design open up new possibilities to further improve the sensitivity at the receiver-end of the next-generation of passive optical network (PON) and coherent communication systems.

9.
Transgenic Res ; 32(6): 547-560, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37851307

RESUMEN

Crassulacean acid metabolism (CAM) is one of three major models of carbon dioxide assimilation pathway with better water-use efficiency and slower photosynthetic efficiency in photosynthesis. Previous studies indicated that the gene of sweet pepper plant ferredoxin-like protein (PFLP) shows high homology to the ferredoxin-1(Fd-1) family that belongs to photosynthetic type Fd and involves in photosystem I. It is speculated that overexpressing pflp in the transgenic plant may enhance photosynthetic efficiency through the electron transport chain (ETC). To reveal the function of PFLP in photosynthetic efficiency, pflp transgenic Phalaenopsis, a CAM plant, was generated to analyze photosynthetic markers. Transgenic plants exhibited 1.2-folds of electron transport rate than that of wild type (WT), and higher CO2 assimilation rates up to 1.6 and 1.5-folds samples at 4 pm and 10 pm respectively. Enzyme activity of phosphoenolpyruvate carboxylase (PEPC) was increased to 5.9-folds in Phase III, and NAD+-linked malic enzyme (NAD+-ME) activity increased 1.4-folds in Phase IV in transgenic plants. The photosynthesis products were analyzed between transgenic plants and WT. Soluble sugars contents such as glucose, fructose, and sucrose were found to significantly increase to 1.2, 1.8, and 1.3-folds higher in transgenic plants. The starch grains were also accumulated up to 1.4-folds in transgenic plants than that of WT. These results indicated that overexpressing pflp in transgenic plants increases carbohydrates accumulation by enhancing electron transport flow during photosynthesis. This is the first evidence for the PFLP function in CAM plants. Taken altogether, we suggest that pflp is an applicable gene for agriculture application that enhances electron transport chain efficiency during photosynthesis.


Asunto(s)
Ferredoxinas , Orchidaceae , Ferredoxinas/genética , Ferredoxinas/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , NAD/metabolismo , Fotosíntesis/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Carbohidratos
10.
Sensors (Basel) ; 23(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36850824

RESUMEN

This research combines the application of artificial intelligence in the production equipment fault monitoring of aerospace components. It detects three-phase current abnormalities in large hot-pressing furnaces through smart meters and provides early preventive maintenance. Different anomalies are classified, and a suitable monitoring process algorithm is proposed to improve the overall monitoring quality, accuracy, and stability by applying AI. We also designed a system to present the heater's power consumption and the hot-pressing furnace's fan and visualize the process. Combining artificial intelligence with the experience and technology of professional technicians and researchers to detect and proactively grasp the health of the hot-pressing furnace equipment improves the shortcomings of previous expert systems, achieves long-term stability, and reduces costs. The complete algorithm introduces a model corresponding to the actual production environment, with the best model result being XGBoost with an accuracy of 0.97.

11.
J Cell Mol Med ; 26(15): 4305-4321, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35794816

RESUMEN

Lung cancer is the leading cause of cancer-associated death, with a global 5-year survival rate <20%. Early metastasis and recurrence remain major challenges for lung cancer treatment. The stemness property of cancer cells has been suggested to play a key role in cancer plasticity, metastasis and drug-resistance, and is a potential target for drug development. In this study, we found that in non-small cell lung cancer (NSCLC), BMI1 and MCL1 play crucial roles of cancer stemness including invasion, chemo-resistance and tumour initiation. JNK signalling serves as a link between oncogenic pathway or genotoxicity to cancer stemness. The activation of JNK, either by mutant EGFR or chemotherapy agent, stabilized BMI1 and MCL1 proteins through suppressing the expression of E3-ubiquitin ligase HUWE1. In lung cancer patient samples, high level of BMI1 is correlated with poor survival, and the expression of BMI1 is positively correlated with MCL1. A novel small-molecule, BI-44, was developed, which effectively suppressed BMI1/MCL1 expressions and inhibited tumour formation and progression in preclinical models. Targeting cancer stemness mediated by BMI1/MCL1 with BI-44 provides the basis for a new therapeutic approach in NSCLC treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Células Madre Neoplásicas/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
Curr Issues Mol Biol ; 44(9): 3980-4000, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36135185

RESUMEN

Polyphenols and flavonoids from non-fermented green tea and fully-fermented black tea exhibit antioxidant abilities that function as natural health foods for daily consumption. Nonetheless, evidence regarding prophylactic effects of purple shoot tea on immunomodulation remains scarce. We compared the immunomodulatory effects of different tea processes on oxidative stress and cytokine expressions in lipopolysaccharide (LPS)-stimulated macrophages. Major constituents of four tea products, Taiwan Tea Experiment Station No.12 (TTES No. 12) black and green tea and purple shoot black and purple shoot green tea (TB, TG, PB and PG, respectively), were analyzed to explore the prophylactic effects on expressions of free radicals, nitric oxide (NO), monocyte chemoattractant protein-1 (MCP-1), interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in LPS-activated RAW264.7 cell models. PG contained abundant levels of total polyphenols, flavonoids, condensed tannins and proanthocyanidins (371.28 ± 3.83; 86.37 ± 1.46; 234.67 ± 10.1; and 24.81 ± 0.75 mg/g, respectively) contributing to excellent free radical scavenging potency. In both the LPS-activated inflammation model and the prophylactic model, all tea extracts suppressed NO secretion in a dose-dependent manner, especially for PG. Intriguingly, most tea extracts enhanced expressions of IL-6 in LPS-stimulated macrophages, except PG. However, all teas disrupted downstream transduction of chemoattractant MCP-1 for immune cell trafficking. In the prophylactic model, all teas inhibited inflammatory responses by attenuating expressions of IL-6 and TNF-α in a dose-dependent manner, especially for TG and PG. Our prophylactic model demonstrated PG exerts robust effects on modulating LPS-induced cytokine expressions of MCP-1, IL-6 and TNF-α through scavenging free radicals and NO. In light of the prophylactic effects on LPS-related inflammation, PG effectively scavenges free radicals to modulate cytokine cascades that could serve as a functional beverage for immunomodulation.

13.
IUBMB Life ; 74(4): 361-370, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35274438

RESUMEN

Organelles can easily be disrupted by intracellular and extracellular factors. Studies on ER and mitochondria indicate that a wide range of responses are elicited upon organelle disruption. One response thought to be of particular importance is autophagy. Cells can target entire organelles into autophagosomes for removal. This wholesale nature makes autophagy a robust means for eliminating compromised organelles. Recently, it was demonstrated that the Golgi apparatus is a substrate of autophagy. On the other hand, various reports have shown that components traffic away from the Golgi for elimination in an autophagosome-independent manner when the Golgi apparatus is stressed. Future studies will reveal how these different pieces of machinery coordinate to drive Golgi degradation. Quantitative measurements will be needed to determine how much autophagy contributes to the maintenance of the Golgi apparatus.


Asunto(s)
Retículo Endoplásmico , Aparato de Golgi , Autofagosomas/metabolismo , Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Control de Calidad
14.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35269994

RESUMEN

Statins are the most effective therapeutic agents for reducing cholesterol synthesis. Given their widespread use, many adverse effects from statins have been reported; of these, musculoskeletal complications occurred in 15% of patients after receiving statins for 6 months, and simvastatin was the most commonly administered statin among these cases. This study investigated the negative effects of simvastatin on skeletal muscle cells. We performed RNA sequencing analysis to determine gene expression in simvastatin-treated cells. Cell proliferation and migration were examined through cell cycle analysis and the transwell filter migration assay, respectively. Cytoskeleton rearrangement was examined through F-actin and tubulin staining. Western blot analysis was performed to determine the expression of cell cycle-regulated and cytoskeleton-related proteins. Transfection of small interfering RNAs (siRNAs) was performed to validate the role of cofilin and stathmin in the simvastatin-mediated inhibition of cell migration. The results revealed that simvastatin inhibited the proliferation and migration of skeletal muscle cells and affected the rearrangement of F-actin and tubulin. Simvastatin reduced the expression of cofilin and stathmin. The knockdown of both cofilin and stathmin by specific siRNA synergistically impaired cell migration. In conclusion, our results indicated that simvastatin inhibited skeletal muscle cell migration by reducing the expressions of cofilin and stathmin.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Estatmina , Factores Despolimerizantes de la Actina , Actinas/genética , Actinas/metabolismo , Movimiento Celular , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Fibras Musculares Esqueléticas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Simvastatina/farmacología , Estatmina/genética , Estatmina/farmacología , Tubulina (Proteína)/genética
15.
Int J Mol Sci ; 23(15)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35955918

RESUMEN

Lidocaine injection is a common treatment for tendon injuries. However, the evidence suggests that lidocaine is toxic to tendon cells. This study investigated the effects of lidocaine on cultured tendon cells, focusing on the molecular mechanisms underlying cell proliferation and extracellular matrix (ECM) production. Tendon cells cultured from rat Achilles tendons were treated with 0.5, 1.0, or 1.5 mg/mL lidocaine for 24 h. Cell proliferation was evaluated by Cell Counting Kit 8 (CCK-8) assay and bromodeoxyuridine (BrdU) assay. Cell apoptosis was assessed by Annexin V and propidium iodide (PI) stain. Cell cycle progression and cell mitosis were assessed through flow cytometry and immunofluorescence staining, respectively. The expression of cyclin E, cyclin A, cyclin-dependent kinase 2 (CDK2), p21, p27, p53, matrix metalloproteinases-2 (MMP-2), matrix metalloproteinases-9 (MMP-9), type I collagen, and type III collagen were examined through Western blotting, and the enzymatic activity of MMP-9 was determined through gelatin zymography. Lidocaine reduced cell proliferation and reduced G1/S transition and cell mitosis. Lidocaine did not have a significant negative effect on cell apoptosis. Lidocaine significantly inhibited cyclin A and CDK2 expression but promoted p21, p27, and p53 expression. Furthermore, the expression of MMP-2 and MMP-9 increased, whereas that of type I and type III collagen decreased. Lidocaine also increased the enzymatic activity of MMP-9. Our findings support the premise that lidocaine inhibits tendon cell proliferation by changing the expression of cell-cycle-related proteins and reduces ECM production by altering levels of MMPs and collagens.


Asunto(s)
Colágeno Tipo III , Metaloproteinasa 9 de la Matriz , Animales , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Colágeno Tipo III/genética , Ciclina A/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo , Matriz Extracelular/metabolismo , Lidocaína/farmacología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratas , Tendones/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
16.
Proc Natl Acad Sci U S A ; 115(27): E6291-E6300, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29915044

RESUMEN

Cells respond to iron deficiency by activating iron-regulatory proteins to increase cellular iron uptake and availability. However, it is not clear how cells adapt to conditions when cellular iron uptake does not fully match iron demand. Here, we show that the mRNA-binding protein tristetraprolin (TTP) is induced by iron deficiency and degrades mRNAs of mitochondrial Fe/S-cluster-containing proteins, specifically Ndufs1 in complex I and Uqcrfs1 in complex III, to match the decrease in Fe/S-cluster availability. In the absence of TTP, Uqcrfs1 levels are not decreased in iron deficiency, resulting in nonfunctional complex III, electron leakage, and oxidative damage. Mice with deletion of Ttp display cardiac dysfunction with iron deficiency, demonstrating that TTP is necessary for maintaining cardiac function in the setting of low cellular iron. Altogether, our results describe a pathway that is activated in iron deficiency to regulate mitochondrial function to match the availability of Fe/S clusters.


Asunto(s)
Deficiencias de Hierro , Proteínas Hierro-Azufre/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , NADH Deshidrogenasa/metabolismo , Tristetraprolina/metabolismo , Animales , Línea Celular , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Proteínas Hierro-Azufre/genética , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/enzimología , NADH Deshidrogenasa/genética , Oxidación-Reducción , Tristetraprolina/genética
17.
Molecules ; 26(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34577123

RESUMEN

Porphyromonas gingivalis has been identified as one of the major periodontal pathogens. Activity-directed fractionation and purification processes were employed to identify bioactive compounds from bitter melon leaf. Ethanolic extract of bitter melon leaf was separated into five subfractions by open column chromatography. Subfraction-5-3 significantly inhibited P. gingivalis-induced interleukin (IL)-8 and IL-6 productions in human monocytic THP-1 cells and then was subjected to separation and purification by using different chromatographic methods. Consequently, 5ß,19-epoxycucurbita-6,23(E),25(26)-triene-3ß,19(R)-diol (charantadiol A) was identified and isolated from the subfraction-5-3. Charantadiol A effectively reduced P. gingivalis-induced IL-6 and IL-8 productions and triggered receptors expressed on myeloid cells (TREM)-1 mRNA level of THP-1 cells. In a separate study, charantadiol A significantly suppressed P. gingivalis-stimulated IL-6 and tumor necrosis factor-α mRNA levels in gingival tissues of mice, confirming the inhibitory effect against P. gingivalis-induced periodontal inflammation. Thus, charantadiol A is a potential anti-inflammatory agent for modulating P. gingivalis-induced inflammation.


Asunto(s)
Monocitos , Porphyromonas gingivalis , Animales , Antiinflamatorios/farmacología , Calor , Ratones , Momordica charantia , Periodontitis
18.
Molecules ; 26(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499307

RESUMEN

Cutibacterium acnes (formerly Propionibacterium acnes) is one of the major bacterial species responsible for acne vulgaris. Numerous bioactive compounds from Momordica charantia Linn. var. abbreviata Ser. have been isolated and examined for many years. In this study, we evaluated the suppressive effect of two cucurbitane-type triterpenoids, 5ß,19-epoxycucurbita-6,23-dien-3ß,19,25-triol (Kuguacin R; KR) and 3ß,7ß,25-trihydroxycucurbita-5,23-dien-19-al (TCD) on live C. acnes-stimulated in vitro and in vivo inflammatory responses. Using human THP-1 monocytes, KR or TCD suppressed C. acnes-induced production of interleukin (IL)-1ß, IL-6 and IL-8 at least above 56% or 45%, as well as gene expression of these three pro-inflammatory cytokines. However, a significantly strong inhibitory effect on production and expression of tumor necrosis factor (TNF)-α was not observed. Both cucurbitanes inhibited C. acnes-induced activation of the myeloid differentiation primary response 88 (MyD88) (up to 62%) and mitogen-activated protein kinases (MAPK) (at least 36%). Furthermore, TCD suppressed the expression of pro-caspase-1 and cleaved caspase-1 (p10). In a separate study, KR or TCD decreased C. acnes-stimulated mouse ear edema by ear thickness (20% or 14%), and reduced IL-1ß-expressing leukocytes and neutrophils in mouse ears. We demonstrated that KR and TCD are potential anti-inflammatory agents for modulating C. acnes-induced inflammation in vitro and in vivo.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Cucurbitacinas/química , Cucurbitacinas/farmacología , Inflamación/tratamiento farmacológico , Momordica charantia/química , Triterpenos/química , Triterpenos/farmacología , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/inmunología , Acné Vulgar/microbiología , Animales , Citocinas/biosíntesis , Citocinas/genética , Modelos Animales de Enfermedad , Glicósidos/química , Glicósidos/farmacología , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Inflamación/inmunología , Inflamación/microbiología , Masculino , Ratones , Ratones Endogámicos ICR , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , Fitoterapia , Extractos Vegetales/química , Extractos Vegetales/farmacología , Propionibacteriaceae/patogenicidad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células THP-1
19.
Opt Express ; 27(11): 15495-15504, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31163745

RESUMEN

We demonstrate a top-illuminated high-speed uni-traveling carrier photodiode (UTC-PD) with a novel design in the p-type absorber, which can effectively shorten the photon absorption depth at telecommunication wavelengths (1.31~1.55 µm) and further enhance the bandwidth-efficiency product of UTC-PD. In our proposed new UTC-PD structure, the p-type In0.53Ga0.47As absorption layer is replaced by the type-II GaAs0.5Sb0.5 (p)/In0.53Ga0.47As (i) hybrid absorber. Due to the narrowing of the bandgap and enhancement of the photo-absorption process at the type-II interface between the GaAs0.5Sb0.5 and In0.53Ga0.47As layers, our device shows an over 16.7% improvement in the responsivity compared with that of UTC-PD with the same thickness of pure In0.53Ga0.47As absorber (0.7 µm) and a zero optical coupling loss. Our demonstrated device with a simple top-illuminated structure offers a large active mesa (25 µm), a wide optical-to-electrical (O-E) bandwidth (33 GHz), a high responsivity (0.7 A/W), and a high saturation current (>5 mA) under 1.31 µm optical wavelength. These promising results suggest that our proposed PD structure can fundamentally overcome the trade-off among bandwidth, efficiency, and device active diameter of high-speed PDs.

20.
Anal Chem ; 90(12): 7283-7291, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29787232

RESUMEN

Stereospecific recognition of chiral molecules is ubiquitous in chemical and biological systems, thus leading to strong demand for the development of enantiomeric drugs, enantioselective sensors, and asymmetric catalysts. In this study, we demonstrate the ratio of d-Cys and l-Cys playing an important role in determining the optical properties and the structures of self-assembled Cys-Au(I) supramolecules prepared through a simple reaction of tetrachloroaurate(III) with chiral cysteine (Cys). The irregularly shaped -[d-Cys-Au(I)] n- or - [l-Cys-Au(I)] n- supramolecules with a size larger than 500 nm possessing strong absorption in the near-UV region and chiroptical characteristics were only obtained from the reaction of Au(III) with d-Cys or l-Cys. On the other hand, spindle-shaped -[d/l-Cys-Au(I)] n- supramolecules were formed when using Au(III) with mixtures of d/l-Cys. Our results have suggested that Au(I)···Au(I) aurophilic interactions, and stacked hydrogen bonding and zwitterionic interactions between d/l-Cys ligands are important in determining their structures. The NaBH4-mediated reduction induces the formation of photoluminescent gold nanoclusters (Au NCs) embedded in the chiral -[d-Cys-Au(I)] n- or -[l-Cys-Au(I)] n- supramolecules with a quantum yield of ca. 10%. The as-formed Au NCs/-[d-Cys-Au(I)] n- and Au NCs/-[l-Cys-Au(I)] n- are an enantiospecific substrate that can trap l-carnitine and d-carnitine, respectively, and function as a nanomatrix for surface-assisted laser desorption/ionization mass spectrometry (LDI-MS). The high absorption efficiency of laser energy, analyte-binding capacity, and homogeneity of the Au NCs/-[Cys-Au(I)] n- allow for quantitation of enantiomeric carnitine down to the micromolar regime with high reproducibility. The superior efficiency of the Au NCs/-[d-Cys-Au(I)] n- substrate has been further validated by quantification of l-carnitine in dietary supplements with accuracy and precision. Our study has opened a new avenue for chiral quantitation of various analytes through LDI-MS using metal nanocomposites consisting of NCs and metal-ligand complexes.


Asunto(s)
Carnitina/análisis , Nanocompuestos/química , Cisteína/química , Oro/química , Rayos Láser , Reproducibilidad de los Resultados , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA