Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(46): 29101-29112, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33127758

RESUMEN

Patients with amyotrophic lateral sclerosis (ALS) can have abnormal TDP-43 aggregates in the nucleus and cytosol of their surviving neurons and glia. Although accumulating evidence indicates that astroglial dysfunction contributes to motor neuron degeneration in ALS, the normal function of TDP-43 in astrocytes are largely unknown, and the role of astroglial TDP-43 loss to ALS pathobiology remains to be clarified. Herein, we show that TDP-43-deleted astrocytes exhibit a cell-autonomous increase in GFAP immunoreactivity without affecting astrocyte or microglia proliferation. At the transcriptomic level, TDP-43-deleted astrocytes resemble A1-reactive astrocytes and induce microglia to increase C1q expression. These astrocytic changes do not cause loss of motor neurons in the spinal cord or denervation at the neuromuscular junction. In contrast, there is a selective reduction of mature oligodendrocytes, but not oligodendrocyte precursor cells, suggesting triglial dysfunction mediated by TDP-43 loss in astrocytes. Moreover, mice with astroglial TDP-43 deletion develop motor, but not sensory, deficits. Taken together, our results demonstrate that TDP-43 is required to maintain the protective functions of astrocytes relevant to the development of motor deficits in mice.


Asunto(s)
Astrocitos/metabolismo , Proteínas de Unión al ADN/metabolismo , Fenotipo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proliferación Celular , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Neuronas Motoras/metabolismo , Unión Neuromuscular/metabolismo , Oligodendroglía/metabolismo , Transcriptoma
2.
Hum Mol Genet ; 28(22): 3777-3791, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31509188

RESUMEN

Pathological fused in sarcoma (FUS) inclusions are found in 10% of patients with frontotemporal dementia and those with amyotrophic lateral sclerosis (ALS) carrying FUS mutations. Current work indicates that FUS mutations may incur gain-of-toxic functions to drive ALS pathogenesis. However, how FUS dysfunction may affect cognition remains elusive. Using a mouse model expressing wild-type human FUS mimicking the endogenous expression pattern and level within the central nervous system, we found that they developed hippocampus-mediated cognitive deficits accompanied by an age-dependent reduction in spine density and long-term potentiation in their hippocampus. However, there were no apparent FUS aggregates, nuclear envelope defects and cytosolic FUS accumulation. These suggest that these proposed pathogenic mechanisms may not be the underlying causes for the observed cognitive deficits. Unbiased transcriptomic analysis identified expression changes in a small set of genes with preferential expression in the neurons and oligodendrocyte lineage cells. Of these, we focused on Sema5a, a gene involved in axon guidance, spine dynamics, Parkinson's disease and autism spectrum disorders. Critically, FUS binds directly to Sema5a mRNA and regulates Sema5a expression in a FUS-dose-dependent manner. Taken together, our data suggest that FUS-driven Sema5a deregulation may underlie the cognitive deficits in FUS transgenic mice.


Asunto(s)
Disfunción Cognitiva/genética , Proteína FUS de Unión a ARN/genética , Semaforinas/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Línea Celular Tumoral , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Neuronas/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Semaforinas/metabolismo
3.
iScience ; 26(11): 108152, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37920668

RESUMEN

MicroRNAs (miRNAs) modulate mRNA expression, and their deregulation contributes to various diseases including amyotrophic lateral sclerosis (ALS). As fused in sarcoma (FUS) is a causal gene for ALS and regulates biogenesis of miRNAs, we systematically analyzed the miRNA repertoires in spinal cords and hippocampi from ALS-FUS mice to understand how FUS-dependent miRNA deregulation contributes to ALS. miRNA profiling identified differentially expressed miRNAs between different central nervous system (CNS) regions as well as disease states. Among the up-regulated miRNAs, miR-1197 targets the pro-survival pseudokinase Trib2. A reduced TRIB2 expression was observed in iPSC-derived motor neurons from ALS patients. Pharmacological stabilization of TRIB2 protein with a clinically approved cancer drug rescues the survival of iPSC-derived human motor neurons, including those from a sporadic ALS patient. Collectively, our data indicate that miRNA profiling can be used to probe the molecular mechanisms underlying selective vulnerability, and TRIB2 is a potential therapeutic target for ALS.

4.
Proc Natl Acad Sci U S A ; 106(32): 13371-6, 2009 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-19666575

RESUMEN

A signature of eclosion hormone (EH) action in insect ecdysis is elevation of cGMP in Inka cells, leading to massive release of ecdysis triggering hormone (ETH) and ecdysis initiation. Although this aspect of EH-induced signal transduction is well known, the receptor mediating this process has not been identified. Here, we describe a receptor guanylyl cyclase BdmGC-1 and its isoform BdmGC-1B in the Oriental fruit fly Bactrocera dorsalis that are activated by EH. The B form exhibits the conserved domains and putative N-glycosylation sites found in BdmGC-1, but possesses an additional 46-amino acid insertion in the extracellular domain and lacks the C-terminal tail of BdmGC-1. Combined immunolabeling and in situ hybridization reveal that BdmGC-1 is expressed in Inka cells. Heterologous expression of BdmGC-1 in HEK cells leads to robust increases in cGMP following exposure to low picomolar concentrations of EH. The B-isoform responds only to higher EH concentrations, suggesting different physiological roles of these cyclases. We propose that BdmGC-1 and BdmGC-1B are high- and low-affinity EH receptors, respectively.


Asunto(s)
Hormonas de Insectos/farmacología , Receptores Acoplados a la Guanilato-Ciclasa/metabolismo , Tephritidae/metabolismo , Animales , Línea Celular , GMP Cíclico/metabolismo , Glicosilación/efectos de los fármacos , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Homología Estructural de Proteína , Tephritidae/efectos de los fármacos , Tráquea/citología , Tráquea/efectos de los fármacos , Tráquea/metabolismo
5.
FEBS J ; 289(24): 7688-7709, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34469619

RESUMEN

Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disease, is characterized by the selective degeneration of motor neurons leading to paralysis and eventual death. Multiple pathogenic mechanisms, including systemic dysmetabolism, have been proposed to contribute to ALS. Among them, dyslipidemia, i.e., abnormal level of cholesterol and other lipids in the circulation and central nervous system (CNS), has been reported in ALS patients, but without a consensus. Cholesterol is a constituent of cellular membranes and a precursor of steroid hormones, oxysterols, and bile acids. Consequently, optimal cholesterol levels are essential for health. Due to the blood-brain barrier (BBB), cholesterol cannot move between the CNS and the rest of the body. As such, cholesterol metabolism in the CNS is proposed to operate autonomously. Despite its importance, it remains elusive how cholesterol dyshomeostasis may contribute to ALS. In this review, we aim to describe the current state of cholesterol metabolism research in ALS, identify unresolved issues, and provide potential directions.


Asunto(s)
Esclerosis Amiotrófica Lateral , Adulto , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Neuronas Motoras/metabolismo , Sistema Nervioso Central/metabolismo , Colesterol , Barrera Hematoencefálica/metabolismo
6.
J Cell Biol ; 220(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34347016

RESUMEN

Cholesterol metabolism operates autonomously within the central nervous system (CNS), where the majority of cholesterol resides in myelin. We demonstrate that TDP-43, the pathological signature protein for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), influences cholesterol metabolism in oligodendrocytes. TDP-43 binds directly to mRNA of SREBF2, the master transcription regulator for cholesterol metabolism, and multiple mRNAs encoding proteins responsible for cholesterol biosynthesis and uptake, including HMGCR, HMGCS1, and LDLR. TDP-43 depletion leads to reduced SREBF2 and LDLR expression, and cholesterol levels in vitro and in vivo. TDP-43-mediated changes in cholesterol levels can be restored by reintroducing SREBF2 or LDLR. Additionally, cholesterol supplementation rescues demyelination caused by TDP-43 deletion. Furthermore, oligodendrocytes harboring TDP-43 pathology from FTD patients show reduced HMGCR and HMGCS1, and coaggregation of LDLR and TDP-43. Collectively, our results indicate that TDP-43 plays a role in cholesterol homeostasis in oligodendrocytes, and cholesterol dysmetabolism may be implicated in TDP-43 proteinopathies-related diseases.


Asunto(s)
Colesterol/metabolismo , Proteínas de Unión al ADN/genética , Demencia Frontotemporal/genética , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Animales , Proteínas de Unión al ADN/deficiencia , Modelos Animales de Enfermedad , Femenino , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Hidroximetilglutaril-CoA Sintasa/genética , Hidroximetilglutaril-CoA Sintasa/metabolismo , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vaina de Mielina/patología , Oligodendroglía/patología , Organoides/metabolismo , Organoides/patología , Cultivo Primario de Células , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transducción de Señal , Médula Espinal/metabolismo , Médula Espinal/patología , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Lóbulo Temporal/metabolismo , Lóbulo Temporal/patología
7.
Autophagy ; 15(5): 827-842, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30669939

RESUMEN

Mutations in C9orf72 leading to hexanucleotide expansions are the most common genetic causes for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A phenotype resembling ALS and FTD is seen in transgenic mice overexpressing the hexanucleotide expansions, but is absent in C9orf72-deficient mice. Thus, the exact function of C9orf72 in neurons and how loss of C9orf72 may contribute to neuronal dysfunction remains to be clearly defined. Here, we showed that primary hippocampal neurons cultured from c9orf72 knockout mice have reduced dendritic arborization and spine density. Quantitative proteomic analysis identified C9orf72 as a component of the macroautophagy/autophagy initiation complex composed of ULK1-RB1CC1-ATG13-ATG101. The association was mediated through the direct interaction with ATG13 via the isoform-specific carboxyl-terminal DENN and dDENN domain of C9orf72. Furthermore, c9orf72 knockout neurons showed reduced LC3-II puncta accompanied by reduced ULK1 levels, suggesting that loss of C9orf72 impairs basal autophagy. Conversely, wild-type neurons treated with a ULK1 kinase inhibitor showed a dose-dependent reduction of dendritic arborization and spine density. Furthermore, expression of the long isoform of human C9orf72 that interacts with the ULK1 complex, but not the short isoform, rescues autophagy and the dendritic arborization phenotypes of c9orf72 knockout neurons. Taken together, our data suggests that C9orf72 has a cell-autonomous role in neuronal and dendritic morphogenesis through promotion of ULK1-mediated autophagy.


Asunto(s)
Autofagia/genética , Proteína C9orf72/fisiología , Neurogénesis/genética , Neuronas/fisiología , Esclerosis Amiotrófica Lateral/genética , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Proteína C9orf72/genética , Células Cultivadas , Demencia Frontotemporal/genética , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis/genética
8.
Elife ; 82019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30747709

RESUMEN

Mutations in coding and non-coding regions of FUS cause amyotrophic lateral sclerosis (ALS). The latter mutations may exert toxicity by increasing FUS accumulation. We show here that broad expression within the nervous system of wild-type or either of two ALS-linked mutants of human FUS in mice produces progressive motor phenotypes accompanied by characteristic ALS-like pathology. FUS levels are autoregulated by a mechanism in which human FUS downregulates endogenous FUS at mRNA and protein levels. Increasing wild-type human FUS expression achieved by saturating this autoregulatory mechanism produces a rapidly progressive phenotype and dose-dependent lethality. Transcriptome analysis reveals mis-regulation of genes that are largely not observed upon FUS reduction. Likely mechanisms for FUS neurotoxicity include autophagy inhibition and defective RNA metabolism. Thus, our results reveal that overriding FUS autoregulation will trigger gain-of-function toxicity via altered autophagy-lysosome pathway and RNA metabolism function, highlighting a role for protein and RNA dyshomeostasis in FUS-mediated toxicity.


Asunto(s)
Autofagia , Homeostasis , Lisosomas/metabolismo , Proteína FUS de Unión a ARN/biosíntesis , Proteína FUS de Unión a ARN/toxicidad , ARN/metabolismo , Animales , Perfilación de la Expresión Génica , Humanos , Ratones Endogámicos C57BL , Proteínas Mutantes/biosíntesis , Proteínas Mutantes/genética , Proteínas Mutantes/toxicidad , Proteína FUS de Unión a ARN/genética
9.
PLoS One ; 12(7): e0180828, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28686708

RESUMEN

Mutations in TDP-43 are associated with proteinaceous inclusions in neurons and are believed to be causative in neurodegenerative diseases such as frontotemporal dementia or amyotrophic lateral sclerosis. Here we describe a Drosophila system where we have engineered the genome to replace the endogenous TDP-43 orthologue with wild type or mutant human TDP-43(hTDP-43). In contrast to other models, these flies express both mutant and wild type hTDP-43 at similar levels to those of the endogenous gene and importantly, no age-related TDP-43 accumulation observed among all the transgenic fly lines. Immunoprecipitation of TDP-43 showed that flies with hTDP-43 mutations had increased levels of ubiquitination and phosphorylation of the hTDP-43 protein. Furthermore, histologically, flies expressing hTDP-43 M337V showed global, robust neuronal staining for phospho-TDP. All three lines: wild type hTDP-43, -G294A and -M337V were homozygous viable, with no defects in development, life span or behaviors observed. The primary behavioral defect was that flies expressing either hTDP-43 G294A or M337V showed a faster decline with age in negative geotaxis. Together, these observations implied that neurons could handle these TDP-43 mutations by phosphorylation- and ubiquitin-dependent proteasome systems, even in a background without the wild type TDP-43. Our findings suggest that these two specific TDP-43 mutations are not inherently toxic, but may require additional environmental or genetic factors to affect longevity or survival.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/genética , Longevidad , Neuronas/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Femenino , Humanos , Masculino , Mutación , Neuronas/citología , Fosforilación , Transducción de Señal , Taxia/fisiología , Transgenes , Ubiquitinación
10.
Brain Res ; 1584: 39-51, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24275199

RESUMEN

Dysfunction of the RNA-binding protein, TDP-43, is strongly implicated as a causative event in many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). TDP-43 is normally found in the nucleus and pathological hallmarks of ALS include the presence of cytoplasmic protein aggregates containing TDP-43 and an associated loss of TDP-43 from the nucleus. Loss of nuclear TDP-43 likely contributes to neurodegeneration. Using Drosophila melanogaster to model TDP-43 loss of function, we show that reduced levels of the voltage-gated calcium channel, cacophony, mediate some of the physiological effects of TDP-43 loss. Null mutations in the Drosophila orthologue of TDP-43, named TBPH, resulted in defective larval locomotion and reduced levels of cacophony protein in whole animals and at the neuromuscular junction. Restoring the levels of cacophony in all neurons or selectively in motor neurons rescued these locomotion defects. Using TBPH immunoprecipitation, we showed that TBPH associates with cacophony transcript, indicating that it is likely to be a direct target for TBPH. Loss of TBPH leads to reduced levels of cacophony transcript, possibly due to increased degradation. In addition, TBPH also appears to regulate the inclusion of some alternatively spliced exons of cacophony. If similar effects of cacophony or related calcium channels are found in human ALS patients, these could be targets for the development of pharmacological therapies for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Canales de Calcio/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Actividad Motora/fisiología , Neuronas Motoras/metabolismo , Empalme Alternativo , Animales , Canales de Calcio/genética , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster , Unión Neuromuscular/metabolismo
11.
G3 (Bethesda) ; 2(7): 789-802, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22870402

RESUMEN

The human Tar-DNA binding protein, TDP-43, is associated with amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. TDP-43 contains two conserved RNA-binding motifs and has documented roles in RNA metabolism, including pre-mRNA splicing and repression of transcription. Here, using Drosophila melanogaster as a model, we generated loss-of-function and overexpression genotypes of Tar-DNA binding protein homolog (TBPH) to study their effect on the transcriptome of the central nervous system (CNS). By using massively parallel sequencing methods (RNA-seq) to profile the CNS, we find that loss of TBPH results in widespread gene activation and altered splicing, much of which are reversed by rescue of TBPH expression. Conversely, TBPH overexpression results in decreased gene expression. Although previous studies implicated both absence and mis-expression of TDP-43 in ALS, our data exhibit little overlap in the gene expression between them, suggesting that the bulk of genes affected by TBPH loss-of-function and overexpression are different. In combination with computational approaches to identify likely TBPH targets and orthologs of previously identified vertebrate TDP-43 targets, we provide a comprehensive analysis of enriched gene ontologies. Our data suggest that TDP-43 plays a role in synaptic transmission, synaptic release, and endocytosis. We also uncovered a potential novel regulation of the Wnt and BMP pathways, many of whose targets appear to be conserved.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Animales , Sitios de Unión , Sistema Nervioso Central/metabolismo , Análisis por Conglomerados , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/metabolismo , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Empalme del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA