Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; 63(15): 2544-2558, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34523362

RESUMEN

Fungal contamination of food, which causes large economic losses and public health problems, is a global concern. Chemical methods are typically used in the food industry to inhibit the growth of spoilage fungus, but there are several drawbacks of chemical methods. Thus, the development of consumer-friendly and ecologically sustainable biological preservation technology has become a hot spot in food research. As a natural biological control agent, lactic acid bacteria (LAB) is a good choice in food preservation due to its antifungal properties. In order to screen and identify new antifungal LAB and antifungal compounds, this review compares three screening methods (overlay method, agar diffusion method, and microplate inhibition method) of antifungal LAB and summarizes the separation and purification techniques of antifungal compounds. A discussion of the effects of LAB, media, temperature, pH, and incubation period on the antifungal activity of LAB to highlight the antifungal properties of LAB for future studies then follows. Additionally, the antifungal mechanism of LAB is elucidated from three aspects: 1) LAB cells, 2) antifungal compounds, and 3) co-cultivation. Finally, research regarding antifungal LAB in food preservation (fruits, vegetables, grain cereals, bakery products, and dairy products) is summarized, which demonstrates the potential application value of LAB in food.


Asunto(s)
Lactobacillales , Antifúngicos/farmacología , Hongos , Microbiología de Alimentos , Conservación de Alimentos/métodos
2.
Aging (Albany NY) ; 16(11): 9625-9648, 2024 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-38829771

RESUMEN

Currently, the repair of large bone defects still faces numerous challenges, with the most crucial being the lack of large bone grafts with good osteogenic properties. In this study, a novel bone repair implant (degradable porous zinc scaffold/BF Exo composite implant) was developed by utilizing laser melting rapid prototyping 3D printing technology to fabricate a porous zinc scaffold, combining it under vacuum conditions with highly bioactive serum exosomes (BF EXO) and Poloxamer 407 thermosensitive hydrogel. The electron microscope revealed the presence of tea saucer-shaped exosomes with a double-layered membrane structure, ranging in diameter from 30-150 nm, with an average size of 86.3 nm and a concentration of 3.28E+09 particles/mL. In vitro experiments demonstrated that the zinc scaffold displayed no significant cytotoxicity, and loading exosomes enhanced the zinc scaffold's ability to promote osteogenic cell activity while inhibiting osteoclast activity. In vivo experiments on rabbits indicated that the hepatic and renal toxicity of the zinc scaffold decreased over time, and the loading of exosomes alleviated the hepatic and renal toxic effects of the zinc scaffold. Throughout various stages of repairing radial bone defects in rabbits, loading exosomes reinforced the zinc scaffold's capacity to enhance osteogenic cell activity, suppress osteoclast activity, and promote angiogenesis. This effect may be attributed to BF Exo's regulation of p38/STAT1 signaling. This study signifies that the combined treatment of degradable porous zinc scaffolds and BF Exo is an effective and biocompatible strategy for bone defect repair therapy.


Asunto(s)
Regeneración Ósea , Exosomas , Osteogénesis , Impresión Tridimensional , Radio (Anatomía) , Andamios del Tejido , Zinc , Animales , Exosomas/metabolismo , Exosomas/trasplante , Conejos , Radio (Anatomía)/cirugía , Osteogénesis/efectos de los fármacos , Porosidad , Regeneración Ósea/efectos de los fármacos , Masculino
3.
Foods ; 12(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37372558

RESUMEN

Putrescine is a low-molecular-weight organic compound that is widely found in pickled foods. Although the intake of biogenic amines is beneficial to humans, an excessive intake can cause discomfort. In this study, the ornithine decarboxylase gene (ODC) was involved in putrescine biosynthesis. After cloning, expression and functional verification, it was induced and expressed in E. coli BL21 (DE3). The relative molecular mass of the recombinant soluble ODC protein was 14.87 kDa. The function of ornithine decarboxylase was analyzed by determining the amino acid and putrescine content. The results show that the ODC protein could catalyze the decarboxylation of ornithine to putrescine. Then, the three-dimensional structure of the enzyme was used as a receptor for the virtual screening of inhibitors. The binding energy of tea polyphenol ligands to the receptor was the highest at -7.2 kcal mol-1. Therefore, tea polyphenols were added to marinated fish to monitor the changes in putrescine content and were found to significantly inhibit putrescine production (p < 0.05). This study lays the foundation for further research on the enzymatic properties of ODC and provides insight into an effective inhibitor for controlling the putrescine content in pickled fish.

4.
Foods ; 12(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36832950

RESUMEN

Antifreeze peptides are a class of small molecule protein hydrolysates that protect frozen products from cold damage under freezing or subcooling conditions. In this study, three different Pseudosciaena crocea (P. crocea) peptides were from pepsin, trypsin, and neutral protease enzymatic hydrolysis. It aimed to elect the P. crocea peptides with better activity through molecular weight, antioxidant activity, and amino acid analysis, as well as to compare the cryoprotective effects with a commercial cryoprotectant. The results showed that the untreated fillets were prone to be oxidized, and the water-holding capacity after freeze-thaw cycle decreased. However, the treatment of the trypsin hydrolysate of P. crocea protein significantly promoted the water-holding capacity level and reduced the loss of Ca2+-ATP enzyme activity and the structural integrity damage of myofibrillar protein in surimi. Moreover, compared with 4% sucrose-added fillets, trypsin hydrolysate treatment enhanced the umami of frozen fillets and reduced the unnecessary sweetness. Therefore, the trypsin hydrolysate of P. crocea protein could be used as a natural cryoprotectant for aquatic products. Hence, this study provides technical support for its use as a food additive to improve the quality of aquatic products after thawing and provides a theoretical basis and experimental foundation for the in-depth research and application of antifreeze peptides.

5.
Front Immunol ; 13: 987937, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311708

RESUMEN

Backgrounds: As a systemic skeletal dysfunction, osteoporosis (OP) is characterized by low bone mass and bone microarchitectural damage. The global incidences of OP are high. Methods: Data were retrieved from databases like Gene Expression Omnibus (GEO), GeneCards, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), Gene Expression Profiling Interactive Analysis (GEPIA2), and other databases. R software (version 4.1.1) was used to identify differentially expressed genes (DEGs) and perform functional analysis. The Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression and random forest algorithm were combined and used for screening diagnostic markers for OP. The diagnostic value was assessed by the receiver operating characteristic (ROC) curve. Molecular signature subtypes were identified using a consensus clustering approach, and prognostic analysis was performed. The level of immune cell infiltration was assessed by the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm. The hub gene was identified using the CytoHubba algorithm. Real-time fluorescence quantitative PCR (RT-qPCR) was performed on the plasma of osteoporosis patients and control samples. The interaction network was constructed between the hub genes and miRNAs, transcription factors, RNA binding proteins, and drugs. Results: A total of 40 DEGs, eight OP-related differential genes, six OP diagnostic marker genes, four OP key diagnostic marker genes, and ten hub genes (TNF, RARRES2, FLNA, STXBP2, EGR2, MAP4K2, NFKBIA, JUNB, SPI1, CTSD) were identified. RT-qPCR results revealed a total of eight genes had significant differential expression between osteoporosis patients and control samples. Enrichment analysis showed these genes were mainly related to MAPK signaling pathways, TNF signaling pathway, apoptosis, and Salmonella infection. RT-qPCR also revealed that the MAPK signaling pathway (p38, TRAF6) and NF-kappa B signaling pathway (c-FLIP, MIP1ß) were significantly different between osteoporosis patients and control samples. The analysis of immune cell infiltration revealed that monocytes, activated CD4 memory T cells, and memory and naïve B cells may be related to the occurrence and development of OP. Conclusions: We identified six novel OP diagnostic marker genes and ten OP-hub genes. These genes can be used to improve the prognostic of OP and to identify potential relationships between the immune microenvironment and OP. Our research will provide insights into the potential therapeutic targets and pathogenesis of osteoporosis.


Asunto(s)
MicroARNs , Osteoporosis , Humanos , Pronóstico , Mapas de Interacción de Proteínas/genética , Perfilación de la Expresión Génica , MicroARNs/genética , Osteoporosis/diagnóstico , Osteoporosis/genética , Osteoporosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA