Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cell Physiol ; 237(12): 4487-4503, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36251015

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers because of its late diagnosis and chemoresistance. Primary cilia, the cellular antennae, are observed in most human cells to maintain development and differentiation. Primary cilia are gradually lost during the progression of pancreatic cancer and are eventually absent in PDAC. Here, we showed that cisplatin-resistant PDAC regrew primary cilia. Additionally, genetic or pharmacological disruption of primary cilia sensitized PDAC to cisplatin treatment. Mechanistically, ataxia telangiectasia mutated (ATM) and ATM and RAD3-related (ATR), tumor suppressors that initiate DNA damage responses, promoted the excessive formation of centriolar satellites (EFoCS) and autophagy activation. Disruption of EFoCS and autophagy inhibited primary ciliogenesis, sensitizing PDAC cells to cisplatin treatment. Collectively, our findings revealed an unexpected interplay among the DNA damage response, primary cilia, and chemoresistance in PDAC and deciphered the molecular mechanism by which ATM/ATR-mediated EFoCS and autophagy cooperatively regulate primary ciliogenesis.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Carcinoma Ductal Pancreático , Resistencia a Antineoplásicos , Neoplasias Pancreáticas , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Daño del ADN , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Cilios , Neoplasias Pancreáticas
2.
NMR Biomed ; 33(9): e4356, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32575161

RESUMEN

Chemical exchange saturation transfer (CEST) can provide metabolite-weighted images in the clinical setting; therefore, understanding the origin of each CEST signal is essential to revealing the changes in diseases at the molecular level, which would provide further insight for diagnoses and treatments. The CEST signal at -1.6 ppm is attributed to the choline methyl group of phosphatidylcholines. The methyl groups have no exchangeable protons, so the corresponding CEST signals must result from the relayed nuclear Overhauser effect (rNOE); however, the detailed mechanism remains unclear. Cholesterol is a major component of biological membranes, and its content is closely related to the dynamics and phases of these lipids. However, cholesterol has a hydroxyl group, which could participate in proton exchange to complete the rNOE process. In this study, we used liposomes containing cholesterol and its analogs (5α-cholestane and progesterone), which presumably have similar capabilities of influencing lipid bilayers, and found that the steroid hydroxyl group is the key to inducing the rNOE at -1.6 ppm. Our results suggest that the origin of the rNOE at -1.6 ppm likely requires an intermolecular NOE between the proton of the choline methyl group and that of the cholesterol hydroxyl group, and a chemical exchange between the cholesterol hydroxyl group and bulk water. However, the phenomenon in which the rNOE at -1.6 ppm appears when the cholesterol concentration is high seems to contradict the in vivo results, suggesting a more complicated mechanism associated with the rNOE at -1.6 ppm in biological membranes.


Asunto(s)
Colesterol/química , Imagen por Resonancia Magnética , 1,2-Dipalmitoilfosfatidilcolina/química , Colestanos/química , Liposomas , Ácido Palmítico/química
3.
Dis Model Mech ; 16(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37929799

RESUMEN

To understand the effects of a high-fat diet (HFD) on lung cancer progression and biomarkers, we here used an inducible mutant epidermal growth factor receptor (EGFR)-driven lung cancer transgenic mouse model fed a regular diet (RD) or HFD. The HFD lung cancer (LC-HFD) group exhibited significant tumor formation and deterioration, such as higher EGFR activity and proliferation marker expression, compared with the RD lung cancer (LC-RD) group. Transcriptomic analysis of the lung tissues revealed that the significantly changed genes in the LC-HFD group were highly enriched in immune-related signaling pathways, suggesting that an HFD alters the immune microenvironment to promote tumor growth. Cytokine and adipokine arrays combined with a comprehensive analysis using meta-database software indicated upregulation of C-reactive protein (CRP) in the LC-HFD group, which presented with increased lung cancer proliferation and metastasis; this was confirmed experimentally. Our results imply that an HFD can turn the tumor growth environment into an immune-related pro-tumorigenic microenvironment and demonstrate that CRP has a role in promoting lung cancer development in this microenvironment.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Ratones , Animales , Proteína C-Reactiva , Dieta Alta en Grasa , Ratones Transgénicos , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Microambiente Tumoral
4.
Commun Biol ; 6(1): 389, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037996

RESUMEN

Long-form collapsin response mediator protein-1 (LCRMP-1) belongs to the CRMP family which comprises brain-enriched proteins responsible for axon guidance. However, its role in spermatogenesis remains unclear. Here we find that LCRMP-1 is abundantly expressed in the testis. To characterize its physiological function, we generate LCRMP-1-deficient mice (Lcrmp-1-/-). These mice exhibit aberrant spermiation with apoptotic spermatids, oligospermia, and accumulation of immature testicular cells, contributing to reduced fertility. In the seminiferous epithelial cycle, LCRMP-1 expression pattern varies in a stage-dependent manner. LCRMP-1 is highly expressed in spermatids during spermatogenesis and especially localized to the spermiation machinery during spermiation. Mechanistically, LCRMP-1 deficiency causes disorganized F-actin due to unbalanced signaling of F-actin dynamics through upregulated PI3K-Akt-mTOR signaling. In conclusion, LCRMP-1 maintains spermatogenesis homeostasis by modulating cytoskeleton remodeling for spermatozoa release.


Asunto(s)
Actinas , Proteínas del Tejido Nervioso , Espermátides , Animales , Masculino , Ratones , Actinas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Espermátides/metabolismo , Espermatogénesis/genética , Proteínas del Tejido Nervioso/metabolismo
5.
Biomedicines ; 10(6)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35740241

RESUMEN

The chemical exchange saturation transfer (CEST) signal at -1.6 ppm is attributed to the choline methyl on phosphatidylcholines and results from the relayed nuclear Overhauser effect (rNOE), that is, rNOE(-1.6). The formation of rNOE(-1.6) involving the cholesterol hydroxyl is shown in liposome models. We aimed to confirm the correlation between cholesterol content and rNOE(-1.6) in cell cultures, tissues, and animals. C57BL/6 mice (N = 9) bearing the C6 glioma tumor were imaged in a 7 T MRI scanner, and their rNOE(-1.6) images were cross-validated through cholesterol staining with filipin. Cholesterol quantification was obtained using an 18.8-T NMR spectrometer from the lipid extracts of the brain tissues from another group of mice (N = 3). The cholesterol content in the cultured cells was manipulated using methyl-ß-cyclodextrin and a complex of cholesterol and methyl-ß-cyclodextrin. The rNOE(-1.6) of the cell homogenates and their cholesterol levels were measured using a 9.4-T NMR spectrometer. The rNOE(-1.6) signal is hypointense in the C6 tumors of mice, which matches the filipin staining results, suggesting that their tumor region is cholesterol deficient. The tissue extracts also indicate less cholesterol and phosphatidylcholine contents in tumors than in normal brain tissues. The amplitude of rNOE(-1.6) is positively correlated with the cholesterol concentration in the cholesterol-manipulated cell cultures. Our results indicate that the cholesterol dependence of rNOE(-1.6) occurs in cell cultures and solid tumors of C6 glioma. Furthermore, when the concentration of phosphatidylcholine is carefully considered, rNOE(-1.6) can be developed as a cholesterol-weighted imaging technique.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA