Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 618(7963): 94-101, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37100916

RESUMEN

Increasing soil carbon and nitrogen storage can help mitigate climate change and sustain soil fertility1,2. A large number of biodiversity-manipulation experiments collectively suggest that high plant diversity increases soil carbon and nitrogen stocks3,4. It remains debated, however, whether such conclusions hold in natural ecosystems5-12. Here we analyse Canada's National Forest Inventory (NFI) database with the help of structural equation modelling (SEM) to explore the relationship between tree diversity and soil carbon and nitrogen accumulation in natural forests. We find that greater tree diversity is associated with higher soil carbon and nitrogen accumulation, validating inferences from biodiversity-manipulation experiments. Specifically, on a decadal scale, increasing species evenness from its minimum to maximum value increases soil carbon and nitrogen in the organic horizon by 30% and 42%, whereas increasing functional diversity enhances soil carbon and nitrogen in the mineral horizon by 32% and 50%, respectively. Our results highlight that conserving and promoting functionally diverse forests could promote soil carbon and nitrogen storage, enhancing both carbon sink capacity and soil nitrogen fertility.


Asunto(s)
Biodiversidad , Secuestro de Carbono , Carbono , Bosques , Nitrógeno , Suelo , Árboles , Carbono/metabolismo , Nitrógeno/metabolismo , Suelo/química , Árboles/clasificación , Árboles/metabolismo
2.
Glob Chang Biol ; 30(10): e17537, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39425618

RESUMEN

Anthropogenic land-use practices influence ecosystem functions and the environment. Yet, the effect of global land-use change on ecosystem nitrogen (N) cycling remains unquantified despite that ecosystem N cycling plays a critical role in maintaining food security. Here, we analysed 2430 paired observations globally to show that converting natural to managed ecosystems increases ratios of autotrophic nitrification to ammonium immobilisation and nitrate to ammonium, but decreases soil immobilisation of mineral N, causing increased N losses via leaching and gaseous N emissions, such as nitrous oxide (e.g., via denitrification), resulting in a leaky N cycle. Changing land use from intensively managed to one that resembles natural ecosystems reversed N losses by 108% on average, resulting in a more conservative N cycle. Structural equation modelling revealed that changes in soil organic carbon, pH and carbon to N ratio were more important than changes in soil moisture content and temperature in predicting ecosystem N retention capacities following land-use conversion and its reversion. The hotspots of leaky N cycles were mostly in equatorial and tropical regions, as well as in Western Europe, the United States and China. Our results suggest that whether an ecosystem exhibits a conservative N cycle after land-use reversion depends on management practices.


Asunto(s)
Ecosistema , Ciclo del Nitrógeno , Suelo , Suelo/química , Agricultura/métodos , Nitrógeno/metabolismo , Nitrógeno/análisis , Modelos Teóricos , Desnitrificación
4.
J Environ Manage ; 351: 119888, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176379

RESUMEN

Amid rising energy crises and greenhouse gas (GHG) emissions, designing energy efficient, GHG mitigation and profitable conservation farming strategies are pertinent for global food security. Therefore, we tested a hypothesis that no-till with residue retaining could improve energy productivity (EP) and energy use efficiency (EUE) while mitigating the carbon footprint (CF), water footprint (WF) and GHG emissions in rice-wheat double cropping system. We studied two tillage viz., conventional and conservation, with/without residue retaining, resulting as CT0 (puddled-transplanted rice, conventional wheat -residue), CTR (puddled-transplanted rice, conventional wheat + residue), NT0 (direct seeded rice, zero-till wheat -residue), and NTR (direct seeded rice, zero-till wheat + residue). The overall results showed that the NTR/NT0 had 34% less energy consumption and 1.2-time higher EP as compared to CTR/CT0. In addition, NTR increased 19.8% EUE than that of CT0. The grain yield ranged from 8.7 to 9.3 and 7.8-8.5 Mg ha-1 under CT and NT system, respectively. In NTR, CF and WF were 56.6% and 17.9% lower than that of CT0, respectively. The net GHG emissions were the highest (7261.4 kg CO2 ha-1 yr-1) under CT0 and lowest (4580.9 kg CO2 ha-1 yr-1) under NTR. Notably, the carbon sequestration under NTR could mitigate half of the system's CO2-eq emissions. The study results suggest that NTR could be a viable option to offset carbon emissions and water footprint by promoting soil organic carbon sequestration, and enhancing energy productivity and energy use efficiency in the South Asian Indo-Gangetic Plains.


Asunto(s)
Gases de Efecto Invernadero , Oryza , Suelo/química , Triticum , Carbono/análisis , Dióxido de Carbono , Agricultura/métodos , Agua
5.
Ecol Lett ; 26(5): 765-777, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36958933

RESUMEN

Forest soil CO2 efflux (FCO2 ) is a crucial process in global carbon cycling; however, how FCO2 responds to disturbance regimes in different forest biomes is poorly understood. We quantified the effects of disturbance regimes on FCO2 across boreal, temperate, tropical and Mediterranean forests based on 1240 observations from 380 studies. Globally, climatic perturbations such as elevated CO2 concentration, warming and increased precipitation increase FCO2 by 13% to 25%. FCO2 is increased by forest conversion to grassland and elevated carbon input by forest management practices but reduced by decreased carbon input, fire and acid rain. Disturbance also changes soil temperature and water content, which in turn affect the direction and magnitude of disturbance influences on FCO2 . FCO2 is disturbance- and biome-type dependent and such effects should be incorporated into earth system models to improve the projection of the feedback between the terrestrial C cycle and climate change.


Asunto(s)
Dióxido de Carbono , Suelo , Bosques , Ecosistema , Carbono
6.
Glob Chang Biol ; 29(7): 1922-1938, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36607160

RESUMEN

Responses of the terrestrial biosphere to rapidly changing environmental conditions are a major source of uncertainty in climate projections. In an effort to reduce this uncertainty, a wide range of global change experiments have been conducted that mimic future conditions in terrestrial ecosystems, manipulating CO2 , temperature, and nutrient and water availability. Syntheses of results across experiments provide a more general sense of ecosystem responses to global change, and help to discern the influence of background conditions such as climate and vegetation type in determining global change responses. Several independent syntheses of published data have yielded distinct databases for specific objectives. Such parallel, uncoordinated initiatives carry the risk of producing redundant data collection efforts and have led to contrasting outcomes without clarifying the underlying reason for divergence. These problems could be avoided by creating a publicly available, updatable, curated database. Here, we report on a global effort to collect and curate 57,089 treatment responses across 3644 manipulation experiments at 1145 sites, simulating elevated CO2 , warming, nutrient addition, and precipitation changes. In the resulting Manipulation Experiments Synthesis Initiative (MESI) database, effects of experimental global change drivers on carbon and nutrient cycles are included, as well as ancillary data such as background climate, vegetation type, treatment magnitude, duration, and, unique to our database, measured soil properties. Our analysis of the database indicates that most experiments are short term (one or few growing seasons), conducted in the USA, Europe, or China, and that the most abundantly reported variable is aboveground biomass. We provide the most comprehensive multifactor global change database to date, enabling the research community to tackle open research questions, vital to global policymaking. The MESI database, freely accessible at doi.org/10.5281/zenodo.7153253, opens new avenues for model evaluation and synthesis-based understanding of how global change affects terrestrial biomes. We welcome contributions to the database on GitHub.


Asunto(s)
Dióxido de Carbono , Ecosistema , Biomasa , Cambio Climático , Clima , Suelo
7.
Ecotoxicol Environ Saf ; 266: 115579, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37856979

RESUMEN

In the background of climate warming, the demand for improving soil quality and carbon (C) sequestration is increasing. The application of biochar to soil has been considered as a method for mitigating climate change and enhancing soil fertility. However, it is uncertain whether the effects of biochar application on C-mineralization and N transformation are influenced by the presence or absence of plant growth-promoting bacteria (PGPB) and soil nitrogen (N) level. An incubation study was conducted to investigate whether the effects of biochar application (0 %, 1 %, 2 % and 4 % of soil mass) on soil respiration, N status, and microbial attributes were altered by the presence or absence of PGPB (i.e., Sphingobium yanoikuyae BJ1) under two soil N levels (N0 and N1 soils as created by the addition of 0 and 0.2 g kg-1 urea- N, respectively). The results showed that biochar, BJ1 strain and their interactive effects on cumulative CO2 emissions were not significant in N0 soils, while the effects of biochar on the cumulative CO2 emissions were dependent on the presence or absence of BJ1 in N1 soils. In N1 soils, applying biochar at 2 % and 4 % increased the cumulative CO2 emissions by 141.0 % and 166.9 %, respectively, when BJ1 was absent. However, applying biochar did not affect CO2 emissions when BJ1 was present. In addition, the presence of BJ1 generally increased ammonium contents in N0 soils, but decreased nitrate contents in N1 soils relative to the absence of BJ1, which indicates that the combination of biochar and BJ1 is beneficial to play the N fixation function of BJ1 in N0 soils. Our results highlight that biochar addition influences not only soil C mineralization but also soil available N, and the direction and magnitude of these effects are highly dependent on the presence of PGPB and the soil N level.


Asunto(s)
Carbono , Suelo , Nitrógeno/análisis , Dióxido de Carbono/análisis , Carbón Orgánico/farmacología , Bacterias
8.
J Environ Manage ; 344: 118474, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37364496

RESUMEN

Pulp mill biosolids (hereafter 'biosolids') could be used as an organic amendment to improve soil fertility and promote crop growth; however, it is unclear how the application of biosolids affects soil greenhouse gas emissions and the mechanisms underlying these effects. Here, we conducted a 2-year field experiment on a 6-year-old hybrid poplar plantation in northern Alberta, Canada, to compare the effects of biosolids, conventional mineral fertilizer (urea), and urea + biosolids on soil CO2, CH4 N2O emissions, as well as soil chemical and microbial properties. We found that the addition of biosolids increased soil CO2 and N2O emissions by 21 and 17%, respectively, while urea addition increased their emissions by 30 and 83%, respectively. However, the addition of urea did not affect soil CO2 emissions when biosolids were also applied. The addition of biosolids and biosolids + urea increased soil dissolved organic carbon (DOC) and microbial biomass C (MBC), while urea addition and biosolids + urea addition increased soil inorganic N, available P and denitrifying enzyme activity (DEA). Furthermore, the CO2 and N2O emissions were positively, while the CH4 emissions were negatively associated with soil DOC, inorganic N, available phosphorus, MBC, microbial biomass N, and DEA. In addition, soil CO2, CH4 and N2O emissions were also strongly associated with soil microbial community composition. We conclude that the application of the combination of biosolids and chemical N fertilizer (urea) could be a beneficial approach for both the disposal and use of pulp mill wastes, by reducing greenhouse gas emissions and improving soil fertility.


Asunto(s)
Gases de Efecto Invernadero , Suelo , Suelo/química , Gases de Efecto Invernadero/análisis , Biosólidos , Dióxido de Carbono/análisis , Urea , Fertilizantes , Nitrógeno/análisis , Alberta , Óxido Nitroso/análisis , Agricultura , Metano/análisis
9.
Glob Chang Biol ; 28(20): 5956-5972, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35841134

RESUMEN

Agroforestry systems (AFS) contribute to carbon (C) sequestration and reduction in greenhouse gas emissions from agricultural lands. However, previously understudied differences among AFS may underestimate their climate change mitigation potential. In this 3-year field study, we assessed various C stocks and greenhouse gas emissions across two common AFS (hedgerows and shelterbelts) and their component land uses: perennial vegetated areas with and without trees (woodland and grassland, respectively), newly planted saplings in grassland, and adjacent annual cropland in central Alberta, Canada. Between 2018 and 2020 (~April-October), nitrous oxide emissions were 89% lower under perennial vegetation relative to the cropland (0.02 and 0.18 g N m-2  year-1 , respectively). In 2020, heterotrophic respiration in the woodland was 53% lower in shelterbelts relative to hedgerows (279 and 600 g C m-2  year-1 , respectively). Within the woodland, deadwood C stock was particularly important in hedgerows (35 Mg C ha-1 or 7% of ecosystem C) relative to shelterbelts (2 Mg C ha-1 or <1% of ecosystem C), and likely affected C cycling differences between the woodland types by enhancing soil labile C and microbial biomass in hedgerows. Deadwood C stock was positively correlated with annual heterotrophic respiration and total (to ~100 cm depth) soil organic C, water-soluble organic C, and microbial biomass C. Total ecosystem C was 1.90-2.55 times greater within the woodland than all other land uses, with 176, 234, 237, and 449 Mg C ha-1 found in the cropland, grassland, planted saplings treatment, and woodland, respectively. Shelterbelt and hedgerow woodlands contained 2.09 and 3.03 times more C, respectively, than adjacent cropland. Our findings emphasize the importance of AFS for fostering C sequestration and reducing greenhouse gas emissions and, in particular, retaining hedgerows (legacy woodland) and their associated deadwood across temperate agroecosystems will help mitigate climate change.


Asunto(s)
Gases de Efecto Invernadero , Óxido Nitroso , Agricultura , Alberta , Carbono/análisis , Secuestro de Carbono , Ecosistema , Gases de Efecto Invernadero/análisis , Óxido Nitroso/análisis , Plantas , Suelo , Árboles
10.
Glob Chang Biol ; 28(21): 6446-6461, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35971768

RESUMEN

Soil microbes make up a significant portion of the genetic diversity and play a critical role in belowground carbon (C) cycling in terrestrial ecosystems. Soil microbial diversity and organic C are often tightly coupled in C cycling processes; however, this coupling can be weakened or broken by rapid global change. A global meta-analysis was performed with 1148 paired comparisons extracted from 229 articles published between January 1998 and December 2021 to determine how nitrogen (N) fertilization affects the relationship between soil C content and microbial diversity in terrestrial ecosystems. We found that N fertilization decreased soil bacterial (-11%) and fungal diversity (-17%), but increased soil organic C (SOC) (+19%), microbial biomass C (MBC) (+17%), and dissolved organic C (DOC) (+25%) across different ecosystems. Organic N (urea) fertilization had a greater effect on SOC, MBC, DOC, and bacterial and fungal diversity than inorganic N fertilization. Most importantly, soil microbial diversity decreased with increasing SOC, MBC, and DOC, and the absolute values of the correlation coefficients decreased with increasing N fertilization rate and duration, suggesting that N fertilization weakened the linkage between soil C and microbial diversity. The weakened linkage might negatively impact essential ecosystem services under high rates of N fertilization; this understanding is important for mitigating the negative impact of global N enrichment on soil C cycling.


Asunto(s)
Nitrógeno , Suelo , Bacterias/genética , Carbono , Ecosistema , Fertilización , Nitrógeno/análisis , Microbiología del Suelo , Urea
11.
Glob Chang Biol ; 28(22): 6679-6695, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36002993

RESUMEN

Changes in precipitation regimes can strongly affect soil nitrogen (N) cycling in terrestrial ecosystems. However, whether altered precipitation regimes may differentially affect soil N cycling between arid and humid biomes at the global scale is unclear. We conducted a meta-analysis using 1036 pairwise observations collected from 194 publications to assess the effects of increased and decreased precipitation on the input (N return from plants), storage (various forms of N in soil), and output (gaseous N emissions) of soil N in arid versus humid biomes at the global scale. We found that (1) increased precipitation significantly increased N input (+12.1%) and output (+34.9%) but decreased N storage (-13.7%), while decreased precipitation significantly decreased N input (-10.7%) and output (-34.8%) but increased N storage (+11.1%); (2) the sensitivity of soil N cycling to increased precipitation was higher in arid regions than in humid regions, while that to decreased precipitation was lower in arid regions than in humid regions; (3) the effect of altered precipitation regimes on soil N cycling was independent of precipitation type (i.e., rainfall vs. snowfall); and (4) the mean annual precipitation regulated soil N cycling in precipitation alteration experiments at the global scale. Overall, our results clearly show that the response of soil N cycling to increased versus decreased precipitation differs between arid and humid regions, indicating the uneven effect of climate change on soil N cycling between these two contrasting climate regions. This implies that ecosystem models need to consider the differential responses of N cycling to altered precipitation regimes in different climatic conditions under future global change scenarios.


Asunto(s)
Ecosistema , Suelo , Clima Desértico , Nitrógeno , Lluvia
12.
Environ Sci Technol ; 56(23): 16546-16566, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36301703

RESUMEN

The contamination of soil with organic pollutants has been accelerated by agricultural and industrial development and poses a major threat to global ecosystems and human health. Various chemical and physical techniques have been developed to remediate soils contaminated with organic pollutants, but challenges related to cost, efficacy, and toxic byproducts often limit their sustainability. Fortunately, phytoremediation, achieved through the use of plants and associated microbiomes, has shown great promise for tackling environmental pollution; this technology has been tested both in the laboratory and in the field. Plant-microbe interactions further promote the efficacy of phytoremediation, with plant growth-promoting bacteria (PGPB) often used to assist the remediation of organic pollutants. However, the efficiency of microbe-assisted phytoremediation can be impeded by (i) high concentrations of secondary toxins, (ii) the absence of a suitable sink for these toxins, (iii) nutrient limitations, (iv) the lack of continued release of microbial inocula, and (v) the lack of shelter or porous habitats for planktonic organisms. In this regard, biochar affords unparalleled positive attributes that make it a suitable bacterial carrier and soil health enhancer. We propose that several barriers can be overcome by integrating plants, PGPB, and biochar for the remediation of organic pollutants in soil. Here, we explore the mechanisms by which biochar and PGPB can assist plants in the remediation of organic pollutants in soils, and thereby improve soil health. We analyze the cost-effectiveness, feasibility, life cycle, and practicality of this integration for sustainable restoration and management of soil.


Asunto(s)
Contaminantes Ambientales , Contaminantes del Suelo , Humanos , Suelo/química , Contaminantes del Suelo/análisis , Ecosistema , Biodegradación Ambiental , Plantas , Bacterias
13.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35955715

RESUMEN

Root foraging enables plants to obtain more soil nutrients in a constantly changing nutrient environment. Little is known about the adaptation mechanism of adventitious roots of plants dominated by asexual reproduction (such as tea plants) to soil potassium heterogeneity. We investigated root foraging strategies for K by two tea plants (low-K tolerant genotype "1511" and low-K intolerant genotype "1601") using a multi-layer split-root system. Root exudates, root architecture and transcriptional responses to K heterogeneity were analyzed by HPLC, WinRHIZO and RNA-seq. With the higher leaf K concentrations and K biological utilization indexes, "1511" acclimated to K heterogeneity better than "1601". For "1511", maximum total root length and fine root length proportion appeared on the K-enriched side; the solubilization of soil K reached the maximum on the low-K side, which was consistent with the amount of organic acids released through root exudation. The cellulose decomposition genes that were abundant on the K-enriched side may have promoted root proliferation for "1511". This did not happen in "1601". The low-K tolerant tea genotype "1511" was better at acclimating to K heterogeneity, which was due to a smart root foraging strategy: more roots (especially fine roots) were developed in the K-enriched side; more organic acids were secreted in the low-K side to activate soil K and the root proliferation in the K-enriched side might be due to cellulose decomposition. The present research provides a practical basis for a better understanding of the adaptation strategies of clonal woody plants to soil nutrient availability.


Asunto(s)
Camellia sinensis , Suelo , Camellia sinensis/genética , Celulosa , Raíces de Plantas/fisiología , Potasio ,
14.
Glob Chang Biol ; 27(17): 4125-4138, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34002431

RESUMEN

Global change has altered nitrogen availability in boreal forest soils. As ectomycorrhizal fungi play critical ecological functions, shifts in their abundance and community composition must be considered in the response of forests to changes in nitrogen availability. Furthermore, ectomycorrhizas are symbiotic, so the response of ectomycorrhizal fungi to nitrogen cannot be understood in isolation of their plant partners. Most previous studies, however, neglect to measure the response of host trees to nitrogen addition simultaneously with that of fungal communities. In addition to being one-sided, most of these studies have also been conducted in coniferous forests. Deciduous and "dual-mycorrhizal" tree species, namely those that form ecto- and arbuscular mycorrhizas, have received little attention despite being widespread in the boreal forest. We applied nitrogen (30 kg ha-1  year-1 ) for 13 years to stands dominated by aspen (Populus tremuloides Michx.) and hypothesized that tree stem radial growth would increase, ectomycorrhizal fungal biomass would decrease, ectomycorrhizal fungal community composition would shift, and the abundance of arbuscular mycorrhizal (AM) fungi would increase. Nitrogen addition initially increased stem radial growth of aspen, but it was not sustained at the time we characterized their mycorrhizas. After 13 years, the abundance of fungi possessing extramatrical hyphae, or "high-biomass" ectomycorrhizas, doubled. No changes occurred in ectomycorrhizal and AM fungal community composition, or in ecto- and AM abundance measured as root colonization. This dual-mycorrhizal tree species did not shift away from ectomycorrhizal fungal dominance with long-term nitrogen input. The unexpected increase in high-biomass ectomycorrhizal fungi with nitrogen addition may be due to increased carbon allocation to their fungal partners by growth-limited trees. Given the focus on conifers in past studies, reconciling results of plant-mycorrhizal fungal relationships in stands of deciduous trees may demand a broader view on the impacts of nitrogen addition on the structure and function of boreal forests.


Asunto(s)
Micorrizas , Populus , Biomasa , Bosques , Hongos , Nitrógeno , Suelo , Microbiología del Suelo , Árboles
15.
Glob Chang Biol ; 27(22): 5950-5962, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34407262

RESUMEN

Soil gross nitrogen (N) mineralization (GNM), a key microbial process in the global N cycle, is mainly controlled by climate and soil properties. This study provides for the first time a comprehensive analysis of the role of soil physicochemical properties and climate and their interactions with soil microbial biomass (MB) in controlling GNM globally. Through a meta-analysis of 970 observations from 337 published papers from various ecosystems, we found that GNM was positively correlated with MB, total carbon, total N and precipitation, and negatively correlated with bulk density (BD) and soil pH. Our multivariate analysis and structural equation modeling revealed that GNM is driven by MB and dominantly influenced by BD and precipitation. The higher total N accelerates GNM via increasing MB. The decrease in BD stimulates GNM via increasing total N and MB, whereas higher precipitation stimulates GNM via increasing total N. Moreover, the GNM varies with ecosystem type, being greater in forests and grasslands with high total carbon and MB contents and low BD and pH compared to croplands. The highest GNM was observed in tropical wet soils that receive high precipitation, which increases the supply of soil substrate (total N) to microbes. Our findings suggest that anthropogenic activities that affect soil microbial population size, BD, soil substrate availability, or soil pH may interact with changes in precipitation regime and land use to influence GNM, which may ultimately affect ecosystem productivity and N loss to the environment.


Asunto(s)
Nitrógeno , Suelo , Carbono , Ecosistema , Nitrógeno/análisis , Microbiología del Suelo
16.
Glob Chang Biol ; 27(24): 6512-6524, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34510656

RESUMEN

Soil gross nitrification (GN) is a critical process in the global nitrogen (N) cycle that results in the formation of nitrate through microbial oxidation of ammonium or organic N, and can both increase N availability to plants and nitrous oxide emissions. Soil GN is thought to be mainly controlled by soil characteristics and the climate, but a comprehensive analysis taking into account the climate, soil characteristics, including microbial characteristics, and their interactions to better understand the direct and indirect controlling factors of GN rates globally is lacking. Using a global meta-analysis based on 901 observations from 330 15 N-labeled studies, we show that GN differs significantly among ecosystem types, with the highest rates found in croplands, in association with higher pH which stimulates nitrifying bacteria activities. Autotrophic and heterotrophic nitrifications contribute 63% and 37%, respectively, to global GN. Soil GN increases significantly with soil total N, microbial biomass, and soil pH, but decreases significantly with soil carbon (C) to N ratio (C:N). Structural equation modeling suggested that GN is mainly controlled by C:N and soil total N. Microbial biomass and pH are also important factors controlling GN and their effects are similar. Precipitation and temperature affect GN by altering C:N and/or soil total N. Soil total N and temperature drive heterotrophic nitrification, whereas C:N and pH drive autotrophic nitrification. Moreover, GN is positively related to nitrous oxide and carbon dioxide emissions. This synthesis suggests that changes in soil C:N, soil total N, microbial population size, and/or soil pH due to anthropogenic activities may influence GN, which will affect nitrate accumulation and gaseous emissions of soils under global climate and land-use changes.


Asunto(s)
Nitrificación , Suelo , Ecosistema , Nitrógeno/análisis , Óxido Nitroso/análisis , Microbiología del Suelo
17.
Environ Sci Technol ; 55(11): 7256-7265, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34013726

RESUMEN

Desert steppe, a unique ecotone between steppe and desert in Eurasia, is considered highly vulnerable to global change. However, the long-term impact of warming and nitrogen deposition on plant biomass production and ecosystem carbon exchange in a desert steppe remains unknown. A 12-year field experiment was conducted in a Stipa breviflora desert steppe in northern China. A split-design was used, with warming simulated by infrared radiators as the primary factor and N addition as the secondary factor. Our long-term experiment shows that warming did not change net ecosystem exchange (NEE) or total aboveground biomass (TAB) due to contrasting effects on C4 (23.4% increase) and C3 (11.4% decrease) plant biomass. However, nitrogen addition increased TAB by 9.3% and NEE by 26.0% by increasing soil available N content. Thus, the studied desert steppe did not switch from a carbon sink to a carbon source in response to global change and positively responded to nitrogen deposition. Our study indicates that the desert steppe may be resilient to long-term warming by regulating plant species with contrasting photosynthetic types and that nitrogen deposition could increase plant growth and carbon sequestration, providing negative feedback on climate change.


Asunto(s)
Ecosistema , Nitrógeno , Carbono , China , Nitrógeno/análisis , Suelo
18.
J Environ Manage ; 295: 113080, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34186312

RESUMEN

Unprecedented increases in agricultural nitrous oxide (N2O) emissions in recent years have caused substantial environmental pollution that leads to ozone depletion and global warming. Application of biochar and/or nitrification inhibitors (NIs) has the potential to reduce N2O emissions; however, it is not clear how biochar application may affect the efficacy of NI in reducing nitrification rates, soil enzyme activities, and N2O emissions under different soil moisture regimes. We conducted a 60-day laboratory incubation experiment to study the effects of manure biochar and nitrapyrin (as a NI) on N2O emissions from a urea fertilized soil with either 60 (low) or 80% (high) water-filled pore space (WFPS). Nitrification rates were significantly affected by biochar × NI × WFPS and biochar × WFPS interactions. Biochar initially increased and then decreased the rates, resulting in 45.2 and 26.6% (P < 0.001 for both) overall reductions in low and high WFPS, respectively while NI reduced the rates only in the first 10 days at 60% WFPS. Biochar decreased (P < 0.001) and NI increased (P = 0.007) ß-1,4-N-acetyl glucosaminidase activities while urease activities were increased (P < 0.001) by biochar across WFPS. Biochar had significant interaction with NI in cumulative N2O emissions with the efficacy of NI being reduced when co-applied with biochar. Cumulative N2O emissions were greater at high than at low WFPS; the emissions were decreased by biochar at 60% WFPS and NI at both 60 and 80% WFPS. We conclude that biochar reduces efficacy of nitrapyrin in mitigating N2O emissions and their effects on net nitrification rates, enzyme activities and N2O emissions are dependent on soil moisture level.


Asunto(s)
Nitrificación , Óxido Nitroso , Agricultura , Carbón Orgánico , Fertilizantes/análisis , Óxido Nitroso/análisis , Picolinas , Suelo
19.
Glob Chang Biol ; 26(9): 5267-5276, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32614503

RESUMEN

We assessed the response of soil microbial nitrogen (N) cycling and associated functional genes to elevated temperature at the global scale. A meta-analysis of 1,270 observations from 134 publications indicated that elevated temperature decreased soil microbial biomass N and increased N mineralization rates, both in the presence and absence of plants. These findings infer that elevated temperature drives microbially mediated N cycling processes from dominance by anabolic to catabolic reaction processes. Elevated temperature increased soil nitrification and denitrification rates, leading to an increase in N2 O emissions of up to 227%, whether plants were present or not. Rates of N mineralization, denitrification and N2 O emission demonstrated significant positive relationships with rates of CO2 emissions under elevated temperatures, suggesting that microbial N cycling processes were associated with enhanced microbial carbon (C) metabolism due to soil warming. The response in the abundance of relevant genes to elevated temperature was not always consistent with changes in N cycling processes. While elevated temperature increased the abundances of the nirS gene with plants and nosZ genes without plants, there was no effect on the abundances of the ammonia-oxidizing archaea amoA gene, ammonia-oxidizing bacteria amoA and nirK genes. This study provides the first global-scale assessment demonstrating that elevated temperature shifts N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification in terrestrial ecosystems. These findings infer that elevated temperatures have a profound impact on global N cycling processes with implications of a positive feedback to global climate and emphasize the close linkage between soil microbial C and N cycling.


Asunto(s)
Nitrificación , Suelo , Archaea/genética , Desnitrificación , Ecosistema , Nitrógeno , Microbiología del Suelo , Temperatura
20.
J Environ Manage ; 266: 110607, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32314745

RESUMEN

The major targets of constructed wetlands (CWs) during wastewater treatment include achieving high-quality effluent and maintaining stable effluent quality. Plant species diversity can increase nitrogen (N) removal efficiency and improve effluent quality by decreasing the effluent N concentrations, including nitrate (NO3--N), ammonium (NH4+-N) and total inorganic nitrogen (TIN) concentrations in CWs. However, the effect of plant diversity on the stability of effluent quality in response to perturbation in the form of an increased NH4+/NO3- ratio in influent has not been studied. This study conducted a microcosm experiment and assembled four plant species richness levels (1, 2, 3 and 4) and 15 species compositions by using 90 simulated CW microcosms to investigate the effect of plant diversity on the effluent N concentrations and their stability with an increase in the influent NH4+/NO3- ratio from 0:100 to 33:67 in the later stage of the experiment. The results showed that (1) plant species richness maintained a positive effect on effluent quality under an increased influent NH4+/NO3- ratio; (2) high species richness enhanced the stability of effluent water quality; (3) the presence of Phragmites australis in the community decreased the effluent TIN concentration and improved its stability under perturbation; and (4) the presence of Typha latifolia had a positive effect on N removal efficiency under perturbation. The establishment of communities with high plant species richness and proper species (such as P. australis) could simultaneously improve the effluent quality and stability in CWs for treating wastewater with increased NH4+/NO3- ratio.


Asunto(s)
Compuestos de Amonio , Humedales , Nitrógeno , Plantas , Eliminación de Residuos Líquidos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA