Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 270(Pt 2): 132151, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729486

RESUMEN

Counterfeiting has caused great concern all over the world. What's more, the fluorescent materials play an important role in technological research and development for high-security. In this work, lead-metal-organic framework (Pb-MOF) and perovskite (MAPbBr3) were used in papers to achieving fluorescence counterfeiting. Pb-MOF, as the template or precursor of MAPbBr3, were in-situ generated on the surface of cellulose fibers (CFs) to preparing into hand sheets (Pb-MOF@CFs). Through the analysis of experimental results, it was found that ligands, reaction systems, addition sequences of drugs, time, etc. would affect the deposition of Pb-MOF on the surface of CFs. Using CH3NH3Br (MABr) as the anti-counterfeiting ink to write on Pb-MOF@CFs, the orange writing leaped across the paper, which caused by Pb in Pb-MOF chemically reacting with MABr forming MAPbBr3. The orange writing displayed green fluorescence under 365 nm ultraviolet lamp excitation. The orange writing with green fluorescence could be extinguished and reconstructed, which had promise for reuse. In addition, fluorescent security papers (MAPbBr3@Pb-MOFs@CFs) were prepared by immersing Pb-MOF@CFs in MABr solution. The fluorescence of MAPbBr3@Pb-MOFs@CFs opened when the surface of it was scraped under 365 nm ultraviolet lamp. This unique fluorescence property was very important in improving the security of products. Consequently, the ongoing research on perovskite and MOFs materials is of great significance.


Asunto(s)
Compuestos de Calcio , Celulosa , Plomo , Estructuras Metalorgánicas , Óxidos , Papel , Titanio , Celulosa/química , Titanio/química , Plomo/química , Compuestos de Calcio/química , Estructuras Metalorgánicas/química , Óxidos/química , Fluorescencia
2.
Int J Biol Macromol ; 269(Pt 2): 132145, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723819

RESUMEN

Sulfonated lignin-based dye dispersants have intensively attracted attention due to their low cost, renewability and abundant sources. However, their utilization is limited by the low content of sulfonic groups and high content of hydroxyl groups in their complex lignin structure, which results in various problems such as high reducing rate of dye, severe staining of the fibers and uneven dyeing. Here, the multi-site sulfonated lignin-based dispersants were prepared with high sulfonic group content (2.20 mmol/g) and low hydroxyl content (2.43 mmol/g). When using it as the dispersant, the dye uptake rate was improved from 69.23 % to 98.55 %, the reducing rate was decreased from 20.82 % to 2.03 %, the K/S value was reduced from 0.69 to 0.02, and the particle sizes in dye system before and after high temperature treatment were stabilized below 0.5 µm. Besides, the dispersion effect was significantly improved because no obvious separation between dye and water was observed even if without the assistance of grinding process. In short, the multi-site sulfonation method proposed in this work could remarkably improve the performances of the lignin-based dye dispersants, which would facilitate the development of the dye dispersion and the high value utilization of lignin.


Asunto(s)
Colorantes , Lignina , Lignina/química , Colorantes/química , Ácidos Sulfónicos/química , Tamaño de la Partícula , Temperatura
3.
Int J Biol Macromol ; 264(Pt 2): 130784, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467212

RESUMEN

Along with the developing of flexible electronics, there is a strong interest in high performance flexible energy storage materials. As natural carbohydrate polymer, cellulose fibers have potential applications in the area due to their biodegradability and flexibility. However, their conductive and electrochemical properties are impossible to meet the demands of practical applications. In this study, cellulose fibers were combined with polyaniline to develop novel paper-based supercapacitor electrode material. Cellulose fibers were firstly coordinated to Cu(II) and subsequently involved in polymerization of polyaniline. Not only the mass loading of polyaniline was significantly increased, but also an impressive area specific capacitance (2767 mF/cm2 at 1 mA/cm2) was achieved. The developed strategy is efficient, environmentally friendly, and has implications for the development of cellulosic paper-based advanced functional materials.


Asunto(s)
Celulosa , Cobre , Compuestos de Anilina , Electrodos
4.
Int J Biol Macromol ; 264(Pt 1): 130599, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442834

RESUMEN

Cellulosic paper-based electrode materials have attracted increasing attention in the field of flexible supercapacitor. As a conductive polymer, polyaniline exhibits high theoretical pseudocapacitive capacitance and has been applied in paper-based electrode materials along with cellulose fibers. However, the stacking of polyaniline usually leads to poor performance of electrodes. In this study, metal-organic coordination polymers of zirconium-alizarin red S and zirconium-phytic acid are applied to modulate the polyaniline layer to obtain high-performance cellulosic paper-based electrode materials. Zirconium hydroxide is firstly loaded on cellulose fibers while alizarin red S and phytic acid are introduced to regulate the morphology of polyaniline through doping and coordination processes. The results show that the introduction of dual coordination polymers is effective to regulate the morphology of polyaniline on cellulose fibers. The performances of the paper-based electrode materials, including electrical conductivity and electrochemistry, are apparently improved. It provides a promising strategy for the potential development of economical and green electrode materials in the conventional paper-making process.


Asunto(s)
Compuestos de Anilina , Antraquinonas , Celulosa , Polímeros , Circonio , Ácido Fítico , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA