Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 173(7): 1570-1572, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29906444

RESUMEN

Sunlight can alter mood, behavior, and cognition, but the cellular basis of this phenomenon remains to be fully elucidated. In this issue of Cell, Zhu et al. shed light on a UV-dependent metabolic pathway that leads to increased synaptic release of glutamate and enhanced motor learning and memory in mice.


Asunto(s)
Ácido Glutámico , Memoria , Animales , Vías Biosintéticas , Encéfalo , Aprendizaje , Ratones , Luz Solar
2.
Cell ; 165(1): 153-164, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26972053

RESUMEN

Amino acids signal to the mTOR complex I (mTORC1) growth pathway through the Rag GTPases. Multiple distinct complexes regulate the Rags, including GATOR1, a GTPase activating protein (GAP), and GATOR2, a positive regulator of unknown molecular function. Arginine stimulation of cells activates mTORC1, but how it is sensed is not well understood. Recently, SLC38A9 was identified as a putative lysosomal arginine sensor required for arginine to activate mTORC1 but how arginine deprivation represses mTORC1 is unknown. Here, we show that CASTOR1, a previously uncharacterized protein, interacts with GATOR2 and is required for arginine deprivation to inhibit mTORC1. CASTOR1 homodimerizes and can also heterodimerize with the related protein, CASTOR2. Arginine disrupts the CASTOR1-GATOR2 complex by binding to CASTOR1 with a dissociation constant of ~30 µM, and its arginine-binding capacity is required for arginine to activate mTORC1 in cells. Collectively, these results establish CASTOR1 as an arginine sensor for the mTORC1 pathway.


Asunto(s)
Arginina/metabolismo , Proteínas Portadoras/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/metabolismo , Multimerización de Proteína , Serina-Treonina Quinasas TOR/metabolismo
3.
Cell ; 161(1): 67-83, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25815986

RESUMEN

For organisms to coordinate their growth and development with nutrient availability, they must be able to sense nutrient levels in their environment. Here, we review select nutrient-sensing mechanisms in a few diverse organisms. We discuss how these mechanisms reflect the nutrient requirements of specific species and how they have adapted to the emergence of multicellularity in eukaryotes.


Asunto(s)
Bacterias/metabolismo , Transducción de Señal , Bacterias/genética , Evolución Biológica , Eucariontes/genética , Eucariontes/metabolismo , Alimentos
4.
Nature ; 621(7979): 577-585, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37557915

RESUMEN

Striatal dopamine and acetylcholine are essential for the selection and reinforcement of motor actions and decision-making1. In vitro studies have revealed an intrastriatal circuit in which acetylcholine, released by cholinergic interneurons (CINs), drives the release of dopamine, and dopamine, in turn, inhibits the activity of CINs through dopamine D2 receptors (D2Rs). Whether and how this circuit contributes to striatal function in vivo is largely unknown. Here, to define the role of this circuit in a living system, we monitored acetylcholine and dopamine signals in the ventrolateral striatum of mice performing a reward-based decision-making task. We establish that dopamine and acetylcholine exhibit multiphasic and anticorrelated transients that are modulated by decision history and reward outcome. Dopamine dynamics and reward encoding do not require the release of acetylcholine by CINs. However, dopamine inhibits acetylcholine transients in a D2R-dependent manner, and loss of this regulation impairs decision-making. To determine how other striatal inputs shape acetylcholine signals, we assessed the contribution of cortical and thalamic projections, and found that glutamate release from both sources is required for acetylcholine release. Altogether, we uncover a dynamic relationship between dopamine and acetylcholine during decision-making, and reveal multiple modes of CIN regulation. These findings deepen our understanding of the neurochemical basis of decision-making and behaviour.


Asunto(s)
Acetilcolina , Cuerpo Estriado , Toma de Decisiones , Dopamina , Ácido Glutámico , Animales , Ratones , Acetilcolina/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Neostriado/citología , Neostriado/metabolismo , Toma de Decisiones/fisiología , Recompensa , Receptores de Dopamina D2/metabolismo , Neuronas Colinérgicas/metabolismo , Vías Nerviosas
5.
Nature ; 607(7919): 610-616, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35831510

RESUMEN

Mechanistic target of rapamycin complex 1 (mTORC1) controls growth by regulating anabolic and catabolic processes in response to environmental cues, including nutrients1,2. Amino acids signal to mTORC1 through the Rag GTPases, which are regulated by several protein complexes, including GATOR1 and GATOR2. GATOR2, which has five components (WDR24, MIOS, WDR59, SEH1L and SEC13), is required for amino acids to activate mTORC1 and interacts with the leucine and arginine sensors SESN2 and CASTOR1, respectively3-5. Despite this central role in nutrient sensing, GATOR2 remains mysterious as its subunit stoichiometry, biochemical function and structure are unknown. Here we used cryo-electron microscopy to determine the three-dimensional structure of the human GATOR2 complex. We found that GATOR2 adopts a large (1.1 MDa), two-fold symmetric, cage-like architecture, supported by an octagonal scaffold and decorated with eight pairs of WD40 ß-propellers. The scaffold contains two WDR24, four MIOS and two WDR59 subunits circularized via two distinct types of junction involving non-catalytic RING domains and α-solenoids. Integration of SEH1L and SEC13 into the scaffold through ß-propeller blade donation stabilizes the GATOR2 complex and reveals an evolutionary relationship to the nuclear pore and membrane-coating complexes6. The scaffold orients the WD40 ß-propeller dimers, which mediate interactions with SESN2, CASTOR1 and GATOR1. Our work reveals the structure of an essential component of the nutrient-sensing machinery and provides a foundation for understanding the function of GATOR2 within the mTORC1 pathway.


Asunto(s)
Aminoácidos , Microscopía por Crioelectrón , Complejos Multiproteicos , Nutrientes , Subunidades de Proteína , Humanos , Aminoácidos/metabolismo , Arginina , Proteínas Portadoras , Leucina , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Nutrientes/metabolismo , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas
6.
Nature ; 556(7699): 64-69, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29590090

RESUMEN

Nutrients, such as amino acids and glucose, signal through the Rag GTPases to activate mTORC1. The GATOR1 protein complex-comprising DEPDC5, NPRL2 and NPRL3-regulates the Rag GTPases as a GTPase-activating protein (GAP) for RAGA; loss of GATOR1 desensitizes mTORC1 signalling to nutrient starvation. GATOR1 components have no sequence homology to other proteins, so the function of GATOR1 at the molecular level is currently unknown. Here we used cryo-electron microscopy to solve structures of GATOR1 and GATOR1-Rag GTPases complexes. GATOR1 adopts an extended architecture with a cavity in the middle; NPRL2 links DEPDC5 and NPRL3, and DEPDC5 contacts the Rag GTPase heterodimer. Biochemical analyses reveal that our GATOR1-Rag GTPases structure is inhibitory, and that at least two binding modes must exist between the Rag GTPases and GATOR1. Direct interaction of DEPDC5 with RAGA inhibits GATOR1-mediated stimulation of GTP hydrolysis by RAGA, whereas weaker interactions between the NPRL2-NPRL3 heterodimer and RAGA execute GAP activity. These data reveal the structure of a component of the nutrient-sensing mTORC1 pathway and a non-canonical interaction between a GAP and its substrate GTPase.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/ultraestructura , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/ultraestructura , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Aminoácidos/deficiencia , Proteínas Activadoras de GTPasa/antagonistas & inhibidores , Proteínas Activadoras de GTPasa/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/química , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/química , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Proteínas Represoras/ultraestructura , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/ultraestructura
7.
Nature ; 543(7645): 438-442, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28199306

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth that responds to diverse environmental signals and is deregulated in many human diseases, including cancer and epilepsy. Amino acids are a key input to this system, and act through the Rag GTPases to promote the translocation of mTORC1 to the lysosomal surface, its site of activation. Multiple protein complexes regulate the Rag GTPases in response to amino acids, including GATOR1, a GTPase activating protein for RAGA, and GATOR2, a positive regulator of unknown molecular function. Here we identify a protein complex (KICSTOR) that is composed of four proteins, KPTN, ITFG2, C12orf66 and SZT2, and that is required for amino acid or glucose deprivation to inhibit mTORC1 in cultured human cells. In mice that lack SZT2, mTORC1 signalling is increased in several tissues, including in neurons in the brain. KICSTOR localizes to lysosomes; binds and recruits GATOR1, but not GATOR2, to the lysosomal surface; and is necessary for the interaction of GATOR1 with its substrates, the Rag GTPases, and with GATOR2. Notably, several KICSTOR components are mutated in neurological diseases associated with mutations that lead to hyperactive mTORC1 signalling. Thus, KICSTOR is a lysosome-associated negative regulator of mTORC1 signalling, which, like GATOR1, is mutated in human disease.


Asunto(s)
Proteínas Portadoras/metabolismo , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Aminoácidos/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Línea Celular , Femenino , Proteínas Activadoras de GTPasa , Glucosa/deficiencia , Glucosa/metabolismo , Humanos , Cadenas alfa de Integrinas , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Especificidad por Sustrato , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
8.
Nature ; 536(7615): 229-33, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27487210

RESUMEN

The mechanistic Target of Rapamycin Complex 1 (mTORC1) is a major regulator of eukaryotic growth that coordinates anabolic and catabolic cellular processes with inputs such as growth factors and nutrients, including amino acids. In mammals arginine is particularly important, promoting diverse physiological effects such as immune cell activation, insulin secretion, and muscle growth, largely mediated through activation of mTORC1 (refs 4, 5, 6, 7). Arginine activates mTORC1 upstream of the Rag family of GTPases, through either the lysosomal amino acid transporter SLC38A9 or the GATOR2-interacting Cellular Arginine Sensor for mTORC1 (CASTOR1). However, the mechanism by which the mTORC1 pathway detects and transmits this arginine signal has been elusive. Here, we present the 1.8 Å crystal structure of arginine-bound CASTOR1. Homodimeric CASTOR1 binds arginine at the interface of two Aspartate kinase, Chorismate mutase, TyrA (ACT) domains, enabling allosteric control of the adjacent GATOR2-binding site to trigger dissociation from GATOR2 and downstream activation of mTORC1. Our data reveal that CASTOR1 shares substantial structural homology with the lysine-binding regulatory domain of prokaryotic aspartate kinases, suggesting that the mTORC1 pathway exploited an ancient, amino-acid-dependent allosteric mechanism to acquire arginine sensitivity. Together, these results establish a structural basis for arginine sensing by the mTORC1 pathway and provide insights into the evolution of a mammalian nutrient sensor.


Asunto(s)
Arginina/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Arginina/química , Arginina/deficiencia , Arginina/farmacología , Aspartato Quinasa/química , Aspartato Quinasa/metabolismo , Cristalografía por Rayos X , Activación Enzimática/efectos de los fármacos , Evolución Molecular , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Modelos Moleculares , Complejos Multiproteicos/química , Unión Proteica/efectos de los fármacos , Multimerización de Proteína , Estructura Terciaria de Proteína , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/química
9.
Mol Cell ; 52(4): 495-505, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24095279

RESUMEN

The mTORC1 kinase is a master growth regulator that senses numerous environmental cues, including amino acids. The Rag GTPases interact with mTORC1 and signal amino acid sufficiency by promoting the translocation of mTORC1 to the lysosomal surface, its site of activation. The Rags are unusual GTPases in that they function as obligate heterodimers, which consist of RagA or B bound to RagC or D. While the loading of RagA/B with GTP initiates amino acid signaling to mTORC1, the role of RagC/D is unknown. Here, we show that RagC/D is a key regulator of the interaction of mTORC1 with the Rag heterodimer and that, unexpectedly, RagC/D must be GDP bound for the interaction to occur. We identify FLCN and its binding partners, FNIP1/2, as Rag-interacting proteins with GAP activity for RagC/D, but not RagA/B. Thus, we reveal a role for RagC/D in mTORC1 activation and a molecular function for the FLCN tumor suppressor.


Asunto(s)
Aminoácidos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/fisiología , Proteínas Portadoras/metabolismo , Proteínas Activadoras de GTPasa/fisiología , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Unión Proteica , Transporte de Proteínas , Transducción de Señal
10.
Nature ; 485(7396): 109-13, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22552098

RESUMEN

The mTOR complex 1 (mTORC1) kinase nucleates a pathway that promotes cell growth and proliferation and is the target of rapamycin, a drug with many clinical uses. mTORC1 regulates messenger RNA translation, but the overall translational program is poorly defined and no unifying model exists to explain how mTORC1 differentially controls the translation of specific mRNAs. Here we use high-resolution transcriptome-scale ribosome profiling to monitor translation in mouse cells acutely treated with the mTOR inhibitor Torin 1, which, unlike rapamycin, fully inhibits mTORC1 (ref. 2). Our data reveal a surprisingly simple model of the mRNA features and mechanisms that confer mTORC1-dependent translation control. The subset of mRNAs that are specifically regulated by mTORC1 consists almost entirely of transcripts with established 5' terminal oligopyrimidine (TOP) motifs, or, like Hsp90ab1 and Ybx1, with previously unrecognized TOP or related TOP-like motifs that we identified. We find no evidence to support proposals that mTORC1 preferentially regulates mRNAs with increased 5' untranslated region length or complexity. mTORC1 phosphorylates a myriad of translational regulators, but how it controls TOP mRNA translation is unknown. Remarkably, loss of just the 4E-BP family of translational repressors, arguably the best characterized mTORC1 substrates, is sufficient to render TOP and TOP-like mRNA translation resistant to Torin 1. The 4E-BPs inhibit translation initiation by interfering with the interaction between the cap-binding protein eIF4E and eIF4G1. Loss of this interaction diminishes the capacity of eIF4E to bind TOP and TOP-like mRNAs much more than other mRNAs, explaining why mTOR inhibition selectively suppresses their translation. Our results clarify the translational program controlled by mTORC1 and identify 4E-BPs and eIF4G1 as its master effectors.


Asunto(s)
Regulación de la Expresión Génica , Modelos Biológicos , Biosíntesis de Proteínas , Proteínas/metabolismo , Regiones no Traducidas 5'/genética , Animales , Secuencia de Bases , Línea Celular Tumoral , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Naftiridinas/farmacología , Motivos de Nucleótidos , Fosforilación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Unión Proteica , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas/antagonistas & inhibidores , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Serina-Treonina Quinasas TOR
12.
bioRxiv ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38260459

RESUMEN

Acetylcholine is widely believed to modulate the release of dopamine in the striatum of mammals. Experiments in brain slices clearly show that synchronous activation of striatal cholinergic interneurons is sufficient to drive dopamine release via axo-axonal stimulation of nicotinic acetylcholine receptors. However, evidence for this mechanism in vivo has been less forthcoming. A recent paper in eLife (Mohebi et al., 2023) reported that, in awake behaving rats, optogenetic activation of striatal cholinergic interneurons with blue light readily evokes dopamine release measured with the red fluorescent sensor RdLight1. Here, we show that blue light alone alters the fluorescent properties of RdLight1 in a manner that may be misconstrued as phasic dopamine release, and that this artefactual photoactivation can account for the effects attributed to cholinergic interneurons. Our findings indicate that measurements of dopamine using the red-shifted fluorescent sensor RdLight1 should be interpreted with caution when combined with optogenetics. In light of this and other publications that did not observe large acetylcholine-evoked dopamine transients in vivo, the conditions under which such release occurs in behaving animals remain unknown.

13.
Elife ; 132024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748470

RESUMEN

Acetylcholine is widely believed to modulate the release of dopamine in the striatum of mammals. Experiments in brain slices clearly show that synchronous activation of striatal cholinergic interneurons is sufficient to drive dopamine release via axo-axonal stimulation of nicotinic acetylcholine receptors. However, evidence for this mechanism in vivo has been less forthcoming. Mohebi, Collins and Berke recently reported that, in awake behaving rats, optogenetic activation of striatal cholinergic interneurons with blue light readily evokes dopamine release measured with the red fluorescent sensor RdLight1 (Mohebi et al., 2023). Here, we show that blue light alone alters the fluorescent properties of RdLight1 in a manner that may be misconstrued as phasic dopamine release, and that this artefactual photoactivation can account for the effects attributed to cholinergic interneurons. Our findings indicate that measurements of dopamine using the red-shifted fluorescent sensor RdLight1 should be interpreted with caution when combined with optogenetics. In light of this and other publications that did not observe large acetylcholine-evoked dopamine transients in vivo, the conditions under which such release occurs in behaving animals remain unknown.


Asunto(s)
Neuronas Colinérgicas , Dopamina , Interneuronas , Optogenética , Dopamina/metabolismo , Animales , Interneuronas/metabolismo , Interneuronas/fisiología , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/fisiología , Ratas , Optogenética/métodos , Motivación , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Acetilcolina/metabolismo
14.
bioRxiv ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37609206

RESUMEN

Animals adapt to varying environmental conditions by modifying the function of their internal organs, including the brain. To be adaptive, alterations in behavior must be coordinated with the functional state of organs throughout the body. Here we find that thyroid hormone- a prominent regulator of metabolism in many peripheral organs- activates cell-type specific transcriptional programs in anterior regions of cortex of adult mice via direct activation of thyroid hormone receptors. These programs are enriched for axon-guidance genes in glutamatergic projection neurons, synaptic regulators across both astrocytes and neurons, and pro-myelination factors in oligodendrocytes, suggesting widespread remodeling of cortical circuits. Indeed, whole-cell electrophysiology recordings revealed that thyroid hormone induces local transcriptional programs that rewire cortical neural circuits via pre-synaptic mechanisms, resulting in increased excitatory drive with a concomitant sensitization of recruited inhibition. We find that thyroid hormone bidirectionally regulates innate exploratory behaviors and that the transcriptionally mediated circuit changes in anterior cortex causally promote exploratory decision-making. Thus, thyroid hormone acts directly on adult cerebral cortex to coordinate exploratory behaviors with whole-body metabolic state.

15.
BMC Evol Biol ; 12: 37, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22429718

RESUMEN

BACKGROUND: Optimality models of evolution, which ignore genetic details and focus on natural selection, are widely used but sometimes criticized as oversimplifications. Their utility for quantitatively predicting phenotypic evolution can be tested experimentally. One such model predicts optimal bacteriophage lysis interval, how long a virus should produce progeny before lysing its host bacterium to release them. The genetic basis of this life history trait is well studied in many easily propagated phages, making it possible to test the model across a variety of environments and taxa. RESULTS: We adapted two related small single-stranded DNA phages, ΦX174 and ST-1, to various conditions. The model predicted the evolution of the lysis interval in response to host density and other environmental factors. In all cases the initial phages lysed later than predicted. The ΦX174 lysis interval did not evolve detectably when the phage was adapted to normal hosts, indicating complete failure of optimality predictions. ΦX174 grown on slyD-defective hosts which initially entirely prevented lysis readily recovered to a lysis interval similar to that attained on normal hosts. Finally, the lysis interval still evolved to the same endpoint when the environment was altered to delay optimal lysis interval. ST-1 lysis interval evolved to be ~2 min shorter, qualitatively in accord with predictions. However, there were no changes in the single known lysis gene. Part of ST-1's total lysis time evolution consisted of an earlier start to progeny production, an unpredicted phenotypic response outside the boundaries of the optimality model. CONCLUSIONS: The consistent failure of the optimality model suggests that constraint and genetic details affect quantitative and even qualitative success of optimality predictions. Several features of ST-1 adaptation show that lysis time is best understood as an output of multiple traits, rather than in isolation.


Asunto(s)
Adaptación Fisiológica , Bacteriófagos/fisiología , Modelos Biológicos , Fenotipo , Evolución Biológica , Escherichia coli/virología , Factores de Tiempo
16.
Biochemistry ; 49(49): 10582-8, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21053939

RESUMEN

The active sites of eukaryotic arginase enzymes are strictly conserved, especially the first- and second-shell ligands that coordinate the two divalent metal cations that generate a hydroxide molecule for nucleophilic attack on the guanidinium carbon of l-arginine and the subsequent production of urea and l-ornithine. Here by using comprehensive pairwise saturation mutagenesis of the first- and second-shell metal ligands in human arginase I, we demonstrate that several metal binding ligands are actually quite tolerant to amino acid substitutions. Of >2800 double mutants of first- and second-shell residues analyzed, we found more than 80 unique amino acid substitutions, of which four were in first-shell residues. Remarkably, certain second-shell mutations could modulate the binding of both the nucleophilic water/hydroxide molecule and substrate or product ligands, resulting in activity greater than that of the wild-type enzyme. The data presented here constitute the first comprehensive saturation mutagenesis analysis of a metallohydrolase active site and reveal that the strict conservation of the second-shell metal binding residues in eukaryotic arginases does not reflect kinetic optimization of the enzyme during the course of evolution.


Asunto(s)
Arginasa/metabolismo , Cobalto/química , Manganeso/química , Secuencia de Aminoácidos , Arginasa/antagonistas & inhibidores , Arginasa/genética , Sitios de Unión/genética , Cobalto/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Manganeso/metabolismo , Datos de Secuencia Molecular , Espectrofotometría Ultravioleta , Especificidad por Sustrato/genética
17.
Elife ; 92020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33043885

RESUMEN

Neurons communicate by the activity-dependent release of small-molecule neurotransmitters packaged into synaptic vesicles (SVs). Although many molecules have been identified as neurotransmitters, technical limitations have precluded a full metabolomic analysis of SV content. Here, we present a workflow to rapidly isolate SVs and to interrogate their metabolic contents at high-resolution using mass spectrometry. We validated the enrichment of glutamate in SVs of primary cortical neurons using targeted polar metabolomics. Unbiased and extensive global profiling of SVs isolated from these neurons revealed that the only detectable polar metabolites they contain are the established neurotransmitters glutamate and GABA. In addition, we adapted the approach to enable quick capture of SVs directly from brain tissue and determined the neurotransmitter profiles of diverse brain regions in a cell-type-specific manner. The speed, robustness, and precision of this method to interrogate SV contents will facilitate novel insights into the chemical basis of neurotransmission.


Asunto(s)
Encéfalo/metabolismo , Espectrometría de Masas/métodos , Metaboloma , Metabolómica/métodos , Vesículas Sinápticas/metabolismo , Animales , Femenino , Ácido Glutámico/metabolismo , Masculino , Ratones
18.
Biochemistry ; 48(46): 11026-31, 2009 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-19839645

RESUMEN

Herein we report the bacterial expression, purification, and enzymatic characterization of the human asparaginase-like protein 1 (hASRGL1). We present evidence that hASRGL1 exhibits beta-aspartyl peptidase activity consistent with enzymes designated as plant-type asparaginases, which had thus far been found in only plants and bacteria. Similar to nonmammalian plant-type asparaginases, hASRGL1 is shown to be an Ntn hydrolase for which Thr168 serves as the essential N-terminal nucleophile for intramolecular processing and catalysis, corroborated in part by abolishment of both activities through the Thr168Ala point mutation. In light of the activity profile reported here, ASRGL1s may act synergistically with protein l-isoaspartyl methyl transferase to relieve accumulation of potentially toxic isoaspartyl peptides in mammalian brain and other tissues.


Asunto(s)
Amidohidrolasas/metabolismo , Asparaginasa/metabolismo , Autoantígenos/metabolismo , Dipeptidasas/química , Amidohidrolasas/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Asparaginasa/química , Asparaginasa/genética , Autoantígenos/química , Autoantígenos/genética , Biocatálisis , Dominio Catalítico , Dipéptidos/química , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología de Secuencia de Aminoácido
19.
Cell Rep ; 29(7): 2016-2027.e4, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31722214

RESUMEN

The neural substrates and pathophysiological mechanisms underlying the onset of cognitive and motor deficits in autism spectrum disorders (ASDs) remain unclear. Mutations in ASD-associated SHANK3 in mice (Shank3B-/-) result in the accelerated maturation of corticostriatal circuits during the second and third postnatal weeks. Here, we show that during this period, there is extensive remodeling of the striatal synaptic proteome and a developmental switch in glutamatergic synaptic plasticity induced by cortical hyperactivity in striatal spiny projection neurons (SPNs). Behavioral abnormalities in Shank3B-/- mice emerge during this stage and are ameliorated by normalizing excitatory synapse connectivity in medial striatal regions by the downregulation of PKA activity. These results suggest that the abnormal postnatal development of striatal circuits is implicated in the onset of behavioral deficits in Shank3B-/- mice and that modulation of postsynaptic PKA activity can be used to regulate corticostriatal drive in developing SPNs of mouse models of ASDs and other neurodevelopmental disorders.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Conducta Animal , Cuerpo Estriado/metabolismo , Proteínas de Microfilamentos/deficiencia , Proteínas del Tejido Nervioso/deficiencia , Neuronas/metabolismo , Animales , Trastorno del Espectro Autista/patología , Cuerpo Estriado/patología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología
20.
Science ; 351(6268): 53-8, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26586190

RESUMEN

Eukaryotic cells coordinate growth with the availability of nutrients through the mechanistic target of rapamycin complex 1 (mTORC1), a master growth regulator. Leucine is of particular importance and activates mTORC1 via the Rag guanosine triphosphatases and their regulators GATOR1 and GATOR2. Sestrin2 interacts with GATOR2 and is a leucine sensor. Here we present the 2.7 angstrom crystal structure of Sestrin2 in complex with leucine. Leucine binds through a single pocket that coordinates its charged functional groups and confers specificity for the hydrophobic side chain. A loop encloses leucine and forms a lid-latch mechanism required for binding. A structure-guided mutation in Sestrin2 that decreases its affinity for leucine leads to a concomitant increase in the leucine concentration required for mTORC1 activation in cells. These results provide a structural mechanism of amino acid sensing by the mTORC1 pathway.


Asunto(s)
Leucina/química , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Serina-Treonina Quinasas TOR/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Células HEK293 , Humanos , Leucina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutación , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Serina-Treonina Quinasas TOR/química , Serina-Treonina Quinasas TOR/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA