Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 179: 60-71, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37019277

RESUMEN

Standard transgenic cell line generation requires screening 100-1000s of colonies to isolate correctly edited cells. We describe CRISPRa On-Target Editing Retrieval (CRaTER) which enriches for cells with on-target knock-in of a cDNA-fluorescent reporter transgene by transient activation of the targeted locus followed by flow sorting to recover edited cells. We show CRaTER recovers rare cells with heterozygous, biallelic-editing of the transcriptionally-inactive MYH7 locus in human induced pluripotent stem cells (hiPSCs), enriching on average 25-fold compared to standard antibiotic selection. We leveraged CRaTER to enrich for heterozygous knock-in of a library of variants in MYH7, a gene in which missense mutations cause cardiomyopathies, and recovered hiPSCs with 113 different variants. We differentiated these hiPSCs to cardiomyocytes and show MHC-ß fusion proteins can localize as expected. Additionally, single-cell contractility analyses revealed cardiomyocytes with a pathogenic, hypertrophic cardiomyopathy-associated MYH7 variant exhibit salient HCM physiology relative to isogenic controls. Thus, CRaTER substantially reduces screening required for isolation of gene-edited cells, enabling generation of functional transgenic cell lines at unprecedented scale.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Hipertrófica , Células Madre Pluripotentes Inducidas , Humanos , Edición Génica , Células Madre Pluripotentes Inducidas/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatía Hipertrófica/genética , Línea Celular , Mutación
2.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36902340

RESUMEN

Missense mutations in myosin heavy chain 7 (MYH7) are a common cause of hypertrophic cardiomyopathy (HCM), but the molecular mechanisms underlying MYH7-based HCM remain unclear. In this work, we generated cardiomyocytes derived from isogenic human induced pluripotent stem cells to model the heterozygous pathogenic MYH7 missense variant, E848G, which is associated with left ventricular hypertrophy and adult-onset systolic dysfunction. MYH7E848G/+ increased cardiomyocyte size and reduced the maximum twitch forces of engineered heart tissue, consistent with the systolic dysfunction in MYH7E848G/+ HCM patients. Interestingly, MYH7E848G/+ cardiomyocytes more frequently underwent apoptosis that was associated with increased p53 activity relative to controls. However, genetic ablation of TP53 did not rescue cardiomyocyte survival or restore engineered heart tissue twitch force, indicating MYH7E848G/+ cardiomyocyte apoptosis and contractile dysfunction are p53-independent. Overall, our findings suggest that cardiomyocyte apoptosis is associated with the MYH7E848G/+ HCM phenotype in vitro and that future efforts to target p53-independent cell death pathways may be beneficial for the treatment of HCM patients with systolic dysfunction.


Asunto(s)
Cardiomiopatía Hipertrófica , Células Madre Pluripotentes Inducidas , Adulto , Humanos , Miocitos Cardíacos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Miosinas Cardíacas/genética , Mutación , Células Madre Pluripotentes Inducidas/metabolismo , Cardiomiopatía Hipertrófica/genética , Contracción Miocárdica/genética , Apoptosis , Cadenas Pesadas de Miosina/metabolismo
3.
Circ Genom Precis Med ; 17(2): e004377, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38362799

RESUMEN

BACKGROUND: Pathogenic autosomal-dominant missense variants in MYH7 (myosin heavy chain 7), which encodes the sarcomeric protein (ß-MHC [beta myosin heavy chain]) expressed in cardiac and skeletal myocytes, are a leading cause of hypertrophic cardiomyopathy and are clinically actionable. However, ≈75% of MYH7 missense variants are of unknown significance. While human-induced pluripotent stem cells (hiPSCs) can be differentiated into cardiomyocytes to enable the interrogation of MYH7 variant effect in a disease-relevant context, deep mutational scanning has not been executed using diploid hiPSC derivates due to low hiPSC gene-editing efficiency. Moreover, multiplexable phenotypes enabling deep mutational scanning of MYH7 variant hiPSC-derived cardiomyocytes are unknown. METHODS: To overcome these obstacles, we used CRISPRa On-Target Editing Retrieval enrichment to generate an hiPSC library containing 113 MYH7 codon variants suitable for deep mutational scanning. We first established that ß-MHC protein loss occurs in a hypertrophic cardiomyopathy human heart with a pathogenic MYH7 variant. We then differentiated the MYH7 missense variant hiPSC library to cardiomyocytes for multiplexed assessment of ß-MHC variant abundance by massively parallel sequencing and hiPSC-derived cardiomyocyte survival. RESULTS: Both the multiplexed assessment of ß-MHC abundance and hiPSC-derived cardiomyocyte survival accurately segregated all known pathogenic variants from synonymous variants. Functional data were generated for 4 variants of unknown significance and 58 additional MYH7 missense variants not yet detected in patients. CONCLUSIONS: This study leveraged hiPSC differentiation into disease-relevant cardiomyocytes to enable multiplexed assessments of MYH7 missense variants for the first time. Phenotyping strategies used here enable the application of deep mutational scanning to clinically actionable genes, which should reduce the burden of variants of unknown significance on patients and clinicians.


Asunto(s)
Cardiomiopatía Hipertrófica , Células Madre Pluripotentes Inducidas , Humanos , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/genética , Células Madre Pluripotentes Inducidas/metabolismo , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Diferenciación Celular/genética , Miosinas Cardíacas/genética
4.
bioRxiv ; 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36747800

RESUMEN

Missense mutations in myosin heavy chain 7 ( MYH7 ) are a common cause of hyper-trophic cardiomyopathy (HCM), but the molecular mechanisms underlying MYH7 -based HCM remain unclear. In this work, we generated cardiomyocytes derived from isogenic human induced pluripotent stem cells to model the heterozygous pathogenic MYH7 missense variant, E848G, which is associated with left ventricular hypertrophy and adultonset systolic dysfunction. MYH7 E848G/+ increased cardiomyocyte size and reduced the maximum twitch forces of engineered heart tissue, consistent with the systolic dysfunction in MYH7 E848G HCM patients. Interestingly, MYH7 E848G/+ cardiomyocytes more frequently underwent apoptosis that was associated with increased p53 activity relative to controls. However, genetic ablation of TP53 did not rescue cardiomyocyte survival or restore engineered heart tissue twitch force, indicating MYH7 E848G/+ cardiomyocyte apoptosis and contractile dysfunction are p53-independent. Overall, our findings suggest that cardiomyocyte apoptosis plays an important role in the MYH7 E848G/+ HCM phenotype in vitro and that future efforts to target p53-independent cell death pathways may be beneficial for the treatment of HCM patients with systolic dysfunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA