Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 27(Pt 6): 1734-1740, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33147202

RESUMEN

Spectral K-edge subtraction imaging and wide-field energy-dispersive X-ray absorption spectroscopy imaging are novel, related, synchrotron imaging techniques for element absorption contrast imaging and element speciation imaging, respectively. These two techniques serve different goals but share the same X-ray optics principles with a bent Laue type monochromator and the same data processing algorithms. As there is a growing interest to implement these novel techniques in synchrotron facilities, Python-based software has been developed to automate the data processing procedures for both techniques. In this paper, the concept of the essential data processing algorithms are explained, the workflow of the software is described, and the main features and some related utilities are introduced.


Asunto(s)
Algoritmos , Procesamiento de Señales Asistido por Computador/instrumentación , Análisis Espectral/métodos , Dosis de Radiación , Relación Señal-Ruido , Programas Informáticos , Técnica de Sustracción , Sincrotrones , Rayos X
2.
J Synchrotron Radiat ; 26(Pt 6): 1863-1871, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31721728

RESUMEN

The recently developed vertical phase-space beam position and size monitor (ps-BPM) system has proven to be able to measure the electron-source position, angle, size and divergence simultaneously in the vertical plane at a single location of a beamline. The optimization of the ps-BPM system is performed by ray-tracing simulation to maximize the instrument sensitivity and resolution. The contribution of each element is studied, including the monochromator, the K-edge filter, the detector and the source-to-detector distance. An optimized system is proposed for diffraction-limited storage rings, such as the Advanced Photon Source Upgrade project. The simulation results show that the ps-BPM system can precisely monitor the source position and angle at high speed. Precise measurements of the source size and divergence will require adequate resolution with relatively longer integration time.

3.
J Synchrotron Radiat ; 26(Pt 4): 1213-1219, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31274446

RESUMEN

An electron beam position and angle monitoring system, ps-BPM, has been shown to be able to measure the electron source position and angle at a single location in a beamline at a synchrotron source. This system uses a monochromator to prepare a photon beam whose energy is at that of the K-edge of an absorber filter. The divergence of the beam from the source gives an energy range that will encompass the K-edge of the filter. A measurement of the centre of the monochromatic beam and the K-edge location through the absorber filter gives the position and angle of the electron source. Here, it is shown that this system is also capable of measuring the source size and divergence at the same time. This capability is validated by measurement as the beam size in the storage ring was changed and by ray-tracing simulations. The system operates by measuring the photon beam spatial distribution as well as a K-edge filtered beam distribution. These additional measurements result in the ability to also determine the electron source size and divergence.

4.
J Synchrotron Radiat ; 24(Pt 4): 842-853, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28664892

RESUMEN

Hydrogel-based cardiac tissue engineering offers great promise for myocardial infarction repair. The ability to visualize engineered systems in vivo in animal models is desired to monitor the performance of cardiac constructs. However, due to the low density and weak X-ray attenuation of hydrogels, conventional radiography and micro-computed tomography are unable to visualize the hydrogel cardiac constructs upon their implantation, thus limiting their use in animal systems. This paper presents a study on the optimization of synchrotron X-ray propagation-based phase-contrast imaging computed tomography (PCI-CT) for three-dimensional (3D) visualization and assessment of the hydrogel cardiac patches. First, alginate hydrogel was 3D-printed into cardiac patches, with the pores filled by fibrin. The hydrogel patches were then surgically implanted on rat hearts. A week after surgery, the hearts including patches were excised and embedded in a soft-tissue-mimicking gel for imaging by using PCI-CT at an X-ray energy of 25 keV. During imaging, the sample-to-detector distances, CT-scan time and the region of interest (ROI) were varied and examined for their effects on both imaging quality and radiation dose. The results showed that phase-retrieved PCI-CT images provided edge-enhancement fringes at a sample-to-detector distance of 147 cm that enabled visualization of anatomical and microstructural features of the myocardium and the implanted patch in the tissue-mimicking gel. For visualization of these features, PCI-CT offered a significantly higher performance than the dual absorption-phase and clinical magnetic resonance (3 T) imaging techniques. Furthermore, by reducing the total CT-scan time and ROI, PCI-CT was examined for lowering the effective dose, meanwhile without much loss of imaging quality. In effect, the higher soft tissue contrast and low-dose potential of PCI-CT has been used along with an acceptable overall animal dose to achieve the high spatial resolution needed for cardiac implant visualization. As a result, PCI-CT at the identified imaging parameters offers great potential for 3D assessment of microstructural features of hydrogel cardiac patches.


Asunto(s)
Corazón , Sincrotrones , Ingeniería de Tejidos , Tomografía Computarizada por Rayos X/métodos , Medios de Contraste , Hidrogeles , Microscopía de Contraste de Fase
5.
J Synchrotron Radiat ; 24(Pt 6): 1146-1151, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29091057

RESUMEN

A bent Laue double-crystal monochromator system has been designed for vertically expanding the X-ray beam at the Canadian Light Source's BioMedical Imaging and Therapy beamlines. Expansion by a factor of 12 has been achieved without deteriorating the transverse coherence of the beam, allowing phase-based imaging techniques to be performed with high flux and a large field of view. However, preliminary studies revealed a lack of uniformity in the beam, presumed to be caused by imperfect bending of the silicon crystal wafers used in the system. Results from finite-element analysis of the system predicted that the second crystal would be most severely affected and has been shown experimentally. It has been determined that the majority of the distortion occurs in the second crystal and is likely caused by an imperfection in the surface of the bending frame. Measurements were then taken to characterize the bending of the crystal using both mechanical and diffraction techniques. In particular, two techniques commonly used to map dislocations in crystal structures have been adapted to map local curvature of the bent crystals. One of these, a variation of Berg-Berrett topography, has been used to quantify the diffraction effects caused by the distortion of the crystal wafer. This technique produces a global mapping of the deviation of the diffraction angle relative to a perfect cylinder. This information is critical for improving bending and measuring tolerances of imperfections by correlating this mapping to areas of missing intensity in the beam.

6.
Proc Natl Acad Sci U S A ; 111(35): 12930-5, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25136096

RESUMEN

Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the gene encoding for the anion channel cystic fibrosis transmembrane conductance regulator (CFTR). Several organs are affected in CF, but most of the morbidity and mortality comes from lung disease. Recent data show that the initial consequence of CFTR mutation is the failure to eradicate bacteria before the development of inflammation and airway remodeling. Bacterial clearance depends on a layer of airway surface liquid (ASL) consisting of both a mucus layer that traps, kills, and inactivates bacteria and a periciliary liquid layer that keeps the mucus at an optimum distance from the underlying epithelia, to maximize ciliary motility and clearance of bacteria. The airways in CF patients and animal models of CF demonstrate abnormal ASL secretion and reduced antimicrobial properties. Thus, it has been proposed that abnormal ASL secretion in response to bacteria may facilitate the development of the infection and inflammation that characterize CF airway disease. Whether the inhalation of bacteria triggers ASL secretion, and the role of CFTR, have never been tested, however. We developed a synchrotron-based imaging technique to visualize the ASL layer and measure the effect of bacteria on ASL secretion. We show that the introduction of Pseudomonas aeruginosa and other bacteria into the lumen of intact isolated swine tracheas triggers CFTR-dependent ASL secretion by the submucosal glands. This response requires expression of the bacterial protein flagellin. In patients with CF, the inhalation of bacteria would fail to trigger ASL secretion, leading to infection and inflammation.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/microbiología , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Tráquea/metabolismo , Tráquea/microbiología , Animales , Fibrosis Quística/inmunología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/inmunología , Femenino , Haemophilus influenzae/metabolismo , Inmunidad Innata/fisiología , Masculino , Mucinas/metabolismo , Infecciones por Pseudomonas/inmunología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/microbiología , Staphylococcus aureus/metabolismo , Porcinos , Sincrotrones , Tráquea/inmunología
7.
J Synchrotron Radiat ; 23(Pt 6): 1498-1500, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27787256

RESUMEN

It has been established that for cylindrically bent crystals the optimal beam characteristics occur when the geometric and single-ray foci are matched. In the beam-expanding monochromator developed for the BioMedical Imaging and Therapy beamlines at the Canadian Light Source, it was unclear how critical this `magic condition' was for preserving the transverse coherence of the beam. A study was conducted to determine whether misalignments away from the ideal conditions would severely affect the transverse coherence of the beam, thereby limiting phase-based imaging techniques. The results were that the magic condition has enough flexibility to accommodate deviations of about ±1° or ±5 keV.

8.
J Synchrotron Radiat ; 22(3): 801-6, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931100

RESUMEN

The BioMedical Imaging and Therapy beamlines at the Canadian Light Source are used by many researchers to capture phase-based imaging data. These experiments have so far been limited by the small vertical beam size, requiring vertical scanning of biological samples in order to image their full vertical extent. Previous work has been carried out to develop a bent Laue beam-expanding monochromator for use at these beamlines. However, the first attempts exhibited significant distortion in the diffraction plane, increasing the beam divergence and eliminating the usefulness of the monochromator for phase-related imaging techniques. Recent work has been carried out to more carefully match the polychromatic and geometric focal lengths in a so-called `magic condition' that preserves the divergence of the beam and enables full-field phase-based imaging techniques. The new experimental parameters, namely asymmetry and Bragg angles, were evaluated by analysing knife-edge and in-line phase images to determine the effect on beam divergence in both vertical and horizontal directions, using the flat Bragg double-crystal monochromator at the beamline as a baseline. The results show that by using the magic condition, the difference between the two monochromator types is less than 10% in the diffraction plane. Phase fringes visible in test images of a biological sample demonstrate that this difference is small enough to enable in-line phase imaging, despite operating at a sub-optimal energy for the wafer and asymmetry angle that was used.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Rayos Láser , Imagen Molecular/instrumentación , Aceleradores de Partículas/instrumentación , Radiografía/instrumentación , Espectrometría por Rayos X/instrumentación , Canadá , Transferencia de Energía , Diseño de Equipo , Análisis de Falla de Equipo , Iluminación/instrumentación , Transición de Fase , Rayos X
9.
J Synchrotron Radiat ; 22(4): 946-55, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26134798

RESUMEN

The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam's position and angle, and thus infer the electron beam's position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered in position and angle at the source point. The results are comparable with other methods of beam position measurement and indicate that such a system is feasible in situations where part of the synchrotron beam can be used for the phase-space measurement.


Asunto(s)
Sincrotrones , Cristalografía por Rayos X , Fotones
10.
Biomed Eng Online ; 14: 91, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26481447

RESUMEN

BACKGROUND: The observation of ultrasound generated cavitation bubbles deep in tissue is very difficult. The development of an imaging method capable of investigating cavitation bubbles in tissue would improve the efficiency and application of ultrasound in the clinic. Among the previous imaging modalities capable of detecting cavitation bubbles in vivo, the acoustic detection technique has the positive aspect of in vivo application. However the size of the initial cavitation bubble and the amplitude of the ultrasound that produced the cavitation bubbles, affect the timing and amplitude of the cavitation bubbles' emissions. METHODS: The spatial distribution of cavitation bubbles, driven by 0.8835 MHz therapeutic ultrasound system at output power of 14 Watt, was studied in water using a synchrotron X-ray imaging technique, Analyzer Based Imaging (ABI). The cavitation bubble distribution was investigated by repeated application of the ultrasound and imaging the water tank. The spatial frequency of the cavitation bubble pattern was evaluated by Fourier analysis. Acoustic cavitation was imaged at four different locations through the acoustic beam in water at a fixed power level. The pattern of cavitation bubbles in water was detected by synchrotron X-ray ABI. RESULTS: The spatial distribution of cavitation bubbles driven by the therapeutic ultrasound system was observed using ABI X-ray imaging technique. It was observed that the cavitation bubbles appeared in a periodic pattern. The calculated distance between intervals revealed that the distance of frequent cavitation lines (intervals) is one-half of the acoustic wave length consistent with standing waves. CONCLUSION: This set of experiments demonstrates the utility of synchrotron ABI for visualizing cavitation bubbles formed in water by clinical ultrasound systems working at high frequency and output powers as low as a therapeutic system.


Asunto(s)
Imagen Óptica/métodos , Terapia por Ultrasonido , Imagen Óptica/instrumentación , Sincrotrones , Rayos X
11.
J Radiol Prot ; 35(2): 383-90, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25906251

RESUMEN

Protection and operational quantities as defined by the International Commission on Radiological Protection (ICRP) and the International Commission on Radiation Units and Measurements (ICRU) are the two sets of quantities recommended for use in radiological protection for external radiation. Since the '80s, the protection quantities have evolved from the concept of dose equivalent to effective dose equivalent to effective dose, and the associated conversion coefficients have undergone changes. In this work, the influence of three different versions of ICRP photon dose conversion coefficients in the synchrotron radiation shielding calculations of an experimental enclosure has been examined. The versions are effective dose equivalent (ICRP Publication 51), effective dose (ICRP Publication 74), and effective dose (ICRP Publication 116) conversion coefficients. The sources of the synchrotron radiation white beam into the enclosure were a bending magnet, an undulator and a wiggler. The ranges of photons energy from these sources were 10-200 keV for the bending magnet and undulator, and 10-500 keV for the wiggler. The design criterion aimed a radiation leakage less than 0.5 µSv h(-1) from the enclosure. As expected, larger conversion coefficients in ICRP Publication 51 lead to higher calculated dose rates. However, the percentage differences among the calculated dose rates get smaller once shielding is added, and the choice of conversion coefficients set did not affect the final shielding decision.


Asunto(s)
Modelos Estadísticos , Exposición a la Radiación/análisis , Protección Radiológica/instrumentación , Protección Radiológica/métodos , Radiometría/métodos , Sincrotrones/instrumentación , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Internacionalidad , Método de Montecarlo , Dosis de Radiación , Radiometría/instrumentación , Dispersión de Radiación
12.
J Synchrotron Radiat ; 21(Pt 3): 479-83, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24763635

RESUMEN

The Biomedical Imaging and Therapy (BMIT) beamline at the Canadian Light Source has produced some excellent biological imaging data. However, the disadvantage of a small vertical beam limits its usability in some applications. Micro-computed tomography (micro-CT) imaging requires multiple scans to produce a full projection, and certain dynamic imaging experiments are not possible. A larger vertical beam is desirable. It was cost-prohibitive to build a longer beamline that would have produced a large vertical beam. Instead, it was proposed to develop a beam expander that would create a beam appearing to originate at a source much farther away. This was accomplished using a bent Laue double-crystal monochromator in a non-dispersive divergent geometry. The design and implementation of this beam expander is presented along with results from the micro-CT and dynamic imaging tests conducted with this beam. Flux (photons per unit area per unit time) has been measured and found to be comparable with the existing flat Bragg double-crystal monochromator in use at BMIT. This increase in overall photon count is due to the enhanced bandwidth of the bent Laue configuration. Whilst the expanded beam quality is suitable for dynamic imaging and micro-CT, further work is required to improve its phase and coherence properties.


Asunto(s)
Intensificación de Imagen Radiográfica/instrumentación , Refractometría/instrumentación , Sincrotrones/instrumentación , Tomografía Computarizada por Rayos X/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad , Rayos X
13.
Mol Imaging Biol ; 24(4): 590-599, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35137326

RESUMEN

PURPOSE: Multiple-image radiography (MIR) is an analyzer-based synchrotron X-ray imaging approach capable of dissociating absorption, refraction, and scattering components of X-ray interaction with the material. It generates additional image contrast mechanisms (besides absorption), especially in the case of soft tissues, while minimizing absorbed radiation dose. Our goal is to develop a contrast agent for MIR using ultrasound microbubbles by carrying out a systematic assessment of size, shell material, and concentration. PROCEDURES: Microbubbles were synthesized with two different shell materials: phospholipid and polyvinyl-alcohol. Polydisperse perfluorobutane-filled lipid microbubbles were divided into five size groups using centrifugation. Two distributions of air-filled polymer microbubbles were generated: 2-3 µm and 3-4 µm. A subset of polymer microbubbles 3-4 µm had iron oxide nanoparticles incorporated into their shell or coated on their surface. Microbubbles were immobilized in agar with different concentrations: 5 × 107, 5 × 106, and 5 × 105 MBs/ml. MIR was conducted on the BioMedical Imaging and Therapy beamline at the Canadian Light Source. Three images were generated: Gaussian amplitude, refraction, and ultra-small-angle X-ray scattering (USAXS). The contrast signal was quantified by measuring mean pixel values and comparing them with agar. RESULTS: No difference was detected in absorption or refraction images of all tested microbubbles. Using USAXS, a significant signal increase was observed with lipid microbubbles 6-10 µm at the highest concentration (p = 0.02), but no signal was observed at lower concentrations. CONCLUSIONS: These data indicate that lipid microbubbles 6-10 µm are candidates as contrast agents for MIR, specifically for USAXS. A minimum concentration of 5 × 107 microbubbles (lipid-shell 6-10 µm) per milliliter was needed to generate a detectable signal.


Asunto(s)
Medios de Contraste , Microburbujas , Agar , Canadá , Lípidos , Polímeros , Radiografía , Sincrotrones
14.
Sci Rep ; 12(1): 18267, 2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309543

RESUMEN

The advent of low-emittance synchrotron X-ray sources and free-electron lasers urges the development of novel diagnostic techniques for measuring and monitoring the spatial source properties, especially the source sizes. This work introduces an X-ray beam property analyzer based on a multi-crystal diffraction geometry, including a crystal-based monochromator and a Laue crystal in a dispersive setting to the monochromator. By measuring the flat beam and the transmitted beam profiles, the system can provide a simultaneous high-sensitivity characterization of the source size, divergence, position, and angle in the diffraction plane of the multi-crystal system. Detailed theoretical modeling predicts the system's feasibility as a versatile characterization tool for monitoring the X-ray source and beam properties. The experimental validation was conducted at a bending magnet beamline at the Swiss Light Source by varying the machine parameters. A measurement sensitivity of less than 10% of a source size of around 12 µm is demonstrated. The proposed system offers a compact setup with simple X-ray optics and can also be utilized for monitoring the electron source.

15.
IEEE Trans Biomed Eng ; 68(5): 1527-1535, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33232220

RESUMEN

OBJECTIVE: X-ray phase contrast imaging generates contrast from refraction of X-rays, enhancing soft tissue contrast compared to conventional absorption-based imaging. Our goal is to develop a contrast agent for X-ray in-line phase contrast imaging (PCI) based on ultrasound microbubbles (MBs), by assessing size, shell material, and concentration. METHODS: Polydisperse perfluorobutane-core lipid-shelled MBs were synthesized and size separated into five groups between 1 and 10 µm. We generated two size populations of polyvinyl-alcohol (PVA)-MBs, 2-3 µm and 3-4 µm, whose shells were either coated or integrated with iron oxide nanoparticles (SPIONs). Microbubbles were then embedded in agar at three concentrations: 5 × 107, 5 × 106 and 5 × 105 MBs/ml. In-line phase contrast imaging was performed at the Canadian Light Source with filtered white beam micro-computed tomography. Phase contrast intensity was measured by both counting detectable MBs, and comparing mean pixel values (MPV) in minimum and maximum intensity projections of the overall samples. RESULTS: Individual lipid-MBs 6-10 µm, lipid-MBs 4-6 µm and PVA-MBs coated with SPIONs were detectable at each concentration. At the highest concentration, lipid-MBs 6-10 µm and 4-6 µm showed an overall increase in positive contrast, whereas at a moderate concentration, only lipid-MBs 6-10 µm displayed an increase. Negative contrast was also observed from two largest lipid-MBs at high concentration. CONCLUSION: These data indicate that lipid-MBs larger than 4 µm are candidates for PCI, and 5 × 106 MBs/ml may be the lowest concentration suitable for generating visible phase contrast in vivo. SIGNIFICANCE: Identifying a suitable MB for PCI may facilitate future clinical translation.


Asunto(s)
Medios de Contraste , Microburbujas , Canadá , Sincrotrones , Ultrasonografía , Microtomografía por Rayos X
16.
J Clin Med ; 9(2)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046072

RESUMEN

Ultrasound can penetrate deep into tissues and interact with human tissue via thermal and mechanical mechanisms. The ability to focus an ultrasound beam and its energy onto millimeter-size targets was a significant milestone in the development of therapeutic applications of focused ultrasound. Focused ultrasound can be used as a non-invasive thermal ablation technique for tumor treatment and is being developed as an option to standard oncologic therapies. High-intensity focused ultrasound has now been used for clinical treatment of a variety of solid malignant tumors, including those in the pancreas, liver, kidney, bone, prostate, and breast, as well as uterine fibroids and soft-tissue sarcomas. Magnetic resonance imaging and Ultrasound imaging can be combined with high intensity focused ultrasound to provide real-time imaging during ablation. Magnetic resonance guided focused ultrasound represents a novel non-invasive method of treatment that may play an important role as an alternative to open neurosurgical procedures for treatment of a number of brain disorders. This paper briefly reviews the underlying principles of HIFU and presents current applications, outcomes, and complications after treatment. Recent applications of Focused ultrasound for tumor treatment, drug delivery, vessel occlusion, histotripsy, movement disorders, and vascular, oncologic, and psychiatric applications are reviewed, along with clinical challenges and potential future clinical applications of HIFU.

17.
Tissue Eng Part C Methods ; 24(2): 74-88, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29050528

RESUMEN

Biofabrication of cell supportive cardiac patches that can be directly implanted on myocardial infarct is a potential solution for myocardial infarction repair. Ideally, cardiac patches should be able to mimic myocardium extracellular matrix for rapid integration with the host tissue, raising the need to develop cardiac constructs with complex features. In particular, cardiac patches should be electrically conductive, mechanically robust and elastic, biologically active and prevascularized. In this study, we aim to biofabricate a nanoreinforced hybrid cardiac patch laden with human coronary artery endothelial cells (HCAECs) with improved electrical, mechanical, and biological behavior. A safe ultraviolet (UV) exposure time with insignificant effect on cell viability was identified for methacrylated collagen (MeCol) micropatterning. The effects of carboxyl functionalized carbon nanotubes (CNTs) on MeCol and alginate matrix morphology, mechanical properties, electrical behavior, and cellular response were investigated at different CNT mass ratios. A UV-integrated 3D-bioprinting technique was implemented to create hybrid hydrogel constructs consisting of CNT-incorporated alginate framework and cell-laden MeCol. The compressive modulus, impedance, and swelling degree of hybrid constructs were assessed over 20 days of incubation in culture medium at 37°C for different CNT mass ratios. The HCAEC viability, proliferation, and differentiation in the context of the bioprinted hybrid constructs were assessed over 10 days in vitro. The functionalized CNTs provided a highly interconnected nanofibrous meshwork that significantly improved viscoelastic behavior and electrical conductivity of photo-cross-linked MeCol. Alginate-coated CNTs provided a nanofilamentous network with fiber size of ∼25-500 nm, improving not only electrical and mechanical properties but also HCAEC attachment and elongation compared to pristine alginate. The CNT-reinforced 3D-printed hybrid constructs presented significantly higher stiffness and electrical conductivity particularly in the physiologically relevant frequency range (∼5 Hz). The CNT-reinforced hybrid implants maintained a significantly higher swelling degree over 20 days of culturing compared to CNT-free hybrid constructs. For a selected CNT mass ratio, HCAECs presented significant cellular proliferation, migration, and differentiation (lumen-like formation) over 10 days of incubation in vitro. Findings from this study deliver essential steps toward developing conductive, robust, and potentially prevascularized hybrid cardiac patches.


Asunto(s)
Bioimpresión/métodos , Vasos Coronarios/citología , Endotelio Vascular/citología , Miocardio/citología , Nanotubos de Carbono/química , Ingeniería de Tejidos/métodos , Rayos Ultravioleta , Supervivencia Celular , Células Cultivadas , Vasos Coronarios/fisiología , Vasos Coronarios/efectos de la radiación , Endotelio Vascular/fisiología , Endotelio Vascular/efectos de la radiación , Matriz Extracelular , Humanos , Hidrogeles , Impresión Tridimensional , Andamios del Tejido
18.
Ultrasound Med Biol ; 43(6): 1085-1104, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28342566

RESUMEN

Ultrasound is widely used for medical diagnosis and increasingly for therapeutic purposes. An understanding of the bio-effects of sonography is important for clinicians and scientists working in the field because permanent damage to biological tissues can occur at high levels of exposure. Here the underlying principles of thermal mechanisms and the physical interactions of ultrasound with biological tissues are reviewed. Adverse health effects derived from cellular studies, animal studies and clinical reports are reviewed to provide insight into the in vitro and in vivo bio-effects of ultrasound.


Asunto(s)
Tratamiento con Ondas de Choque Extracorpóreas/efectos adversos , Ondas de Choque de Alta Energía/efectos adversos , Mecanotransducción Celular/efectos de la radiación , Traumatismos por Radiación/etiología , Traumatismos por Radiación/fisiopatología , Animales , Relación Dosis-Respuesta en la Radiación , Medicina Basada en la Evidencia , Humanos , Dosis de Radiación , Traumatismos por Radiación/patología
19.
Tissue Eng Part C Methods ; 23(9): 548-564, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28726575

RESUMEN

Three-dimensional (3D)-bioprinting techniques may be used to modulate electrical/mechanical properties and porosity of hydrogel constructs for fabrication of suitable cardiac implants. Notably, characterization of these properties after implantation remains a challenge, raising the need for the development of novel quantitative imaging techniques for monitoring hydrogel implant behavior in situ. This study aims at (i) assessing the influence of hydrogel bioprinting patterns on electrical/mechanical behavior of cardiac implants based on a 3D-printing technique and (ii) investigating the potential of synchrotron X-ray phase-contrast imaging computed tomography (PCI-CT) for estimating elastic modulus/impedance/porosity and microstructural features of 3D-printed cardiac implants in situ via an ex vivo study. Alginate laden with human coronary artery endothelial cells was bioprinted layer by layer, forming cardiac constructs with varying architectures. The elastic modulus, impedance, porosity, and other structural features, along with the cell viability and degradation of printed implants were examined in vitro over 25 days. Two selected cardiac constructs were surgically implanted onto the myocardium of rats and 10 days later, the rat hearts with implants were imaged ex vivo by means of PCI-CT at varying X-ray energies and CT-scan times. The elastic modulus/impedance, porosity, and structural features of the implant were inferred from the PCI-CT images by using statistical models and compared with measured values. The printing patterns had significant effects on implant porosity, elastic modulus, and impedance. A particular 3D-printing pattern with an interstrand distance of 900 µm and strand alignment angle of 0/45/90/135° provided relatively higher stiffness and electrical conductivity with a suitable porosity, maintaining high cell viability over 7 days. The X-ray photon energy of 30-33 keV utilizing a CT-scan time of 1-1.2 h resulted in a low-dose PCI-CT, which provided a good visibility of the low-X-ray absorbent alginate implants. After 10 days postimplantation, the PCI-CT provided a reasonably accurate estimation of implant strand thickness and alignment, pore size and interconnectivity, porosity, elastic modulus, and impedance, which were consistent with our measurements. Findings from this study suggest that 3D-printing patterns can be used to modulate electrical/mechanical behavior of alginate implants, and PCI-CT can be potentially used as a 3D quantitative imaging tool for assessing structural and electrical/mechanical behavior of hydrogel cardiac implants in small animal models.


Asunto(s)
Alginatos/farmacología , Bioimpresión/métodos , Electricidad , Miocardio/citología , Prótesis e Implantes , Tomografía Computarizada por Rayos X , Supervivencia Celular , Vasos Coronarios/citología , Módulo de Elasticidad , Impedancia Eléctrica , Células Endoteliales/citología , Ácido Glucurónico/farmacología , Ácidos Hexurónicos/farmacología , Humanos , Fenómenos Mecánicos , Impresión Tridimensional
20.
Phys Med Biol ; 51(2): 221-36, 2006 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-16394335

RESUMEN

We recently proposed a phase-sensitive x-ray imaging method called multiple-image radiography (MIR), which is an improvement on the diffraction-enhanced imaging technique. MIR simultaneously produces three images, depicting separately the effects of absorption, refraction and ultra-small-angle scattering of x-rays, and all three MIR images are virtually immune to degradation caused by scattering at higher angles. Although good results have been obtained using MIR, no quantitative model of the imaging process has yet been developed. In this paper, we present a theoretical prediction of the MIR image values in terms of fundamental physical properties of the object being imaged. We use radiative transport theory to model the beam propagation, and we model the object as a stratified medium containing discrete scattering particles. An important finding of our analysis is that the image values in all three MIR images are line integrals of various object parameters, which is an essential property for computed tomography to be achieved with conventional reconstruction methods. Our analysis also shows that MIR truly separates the effects of absorption, refraction and ultra-small-angle scattering for the case considered. We validate our analytical model using real and simulated imaging data.


Asunto(s)
Algoritmos , Simulación por Computador , Pie/diagnóstico por imagen , Modelos Teóricos , Intensificación de Imagen Radiográfica , Humanos , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA