Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(29): e2117484120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428907

RESUMEN

One major question in neuroscience is how to relate connectomes to neural activity, circuit function, and learning. We offer an answer in the peripheral olfactory circuit of the Drosophila larva, composed of olfactory receptor neurons (ORNs) connected through feedback loops with interconnected inhibitory local neurons (LNs). We combine structural and activity data and, using a holistic normative framework based on similarity-matching, we formulate biologically plausible mechanistic models of the circuit. In particular, we consider a linear circuit model, for which we derive an exact theoretical solution, and a nonnegative circuit model, which we examine through simulations. The latter largely predicts the ORN [Formula: see text] LN synaptic weights found in the connectome and demonstrates that they reflect correlations in ORN activity patterns. Furthermore, this model accounts for the relationship between ORN [Formula: see text] LN and LN-LN synaptic counts and the emergence of different LN types. Functionally, we propose that LNs encode soft cluster memberships of ORN activity, and partially whiten and normalize the stimulus representations in ORNs through inhibitory feedback. Such a synaptic organization could, in principle, autonomously arise through Hebbian plasticity and would allow the circuit to adapt to different environments in an unsupervised manner. We thus uncover a general and potent circuit motif that can learn and extract significant input features and render stimulus representations more efficient. Finally, our study provides a unified framework for relating structure, activity, function, and learning in neural circuits and supports the conjecture that similarity-matching shapes the transformation of neural representations.


Asunto(s)
Conectoma , Neuronas Receptoras Olfatorias , Animales , Drosophila , Neuronas Receptoras Olfatorias/fisiología , Olfato/fisiología , Larva
3.
J Neurosci ; 32(14): 4773-89, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22492033

RESUMEN

Mammalian cochlear spiral ganglion neurons (SGNs) encode sound with microsecond precision. Spike triggering relies upon input from a single ribbon-type active zone of a presynaptic inner hair cell (IHC). Using patch-clamp recordings of rat SGN postsynaptic boutons innervating the modiolar face of IHCs from the cochlear apex, at room temperature, we studied how spike generation contributes to spike timing relative to synaptic input. SGNs were phasic, firing a single short-latency spike for sustained currents of sufficient onset slope. Almost every EPSP elicited a spike, but latency (300-1500 µs) varied with EPSP size and kinetics. When current-clamp stimuli approximated the mean physiological EPSC (≈300 pA), several times larger than threshold current (rheobase, ≈50 pA), spikes were triggered rapidly (latency, ≈500 µs) and precisely (SD, <50 µs). This demonstrated the significance of strong synaptic input. However, increasing EPSC size beyond the physiological mean resulted in less-potent reduction of latency and jitter. Differences in EPSC charge and SGN baseline potential influenced spike timing less as EPSC onset slope and peak amplitude increased. Moreover, the effect of baseline potential on relative threshold was small due to compensatory shift of absolute threshold potential. Experimental first-spike latencies in response to a broad range of stimuli were predicted by a two-compartment exponential integrate-and-fire model, with latency prediction error of <100 µs. In conclusion, the close anatomical coupling between a strong synapse and spike generator along with the phasic firing property lock SGN spikes to IHC exocytosis timing to generate the auditory temporal code with high fidelity.


Asunto(s)
Potenciales de Acción/fisiología , Cóclea/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Ganglio Espiral de la Cóclea/metabolismo , Animales , Animales Recién Nacidos , Cóclea/citología , Cóclea/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Neuronas/fisiología , Ratas , Ratas Wistar , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/fisiología , Factores de Tiempo
4.
Neuron ; 83(6): 1389-403, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25199706

RESUMEN

The mechanisms underlying the large amplitudes and heterogeneity of excitatory postsynaptic currents (EPSCs) at inner hair cell (IHC) ribbon synapses are unknown. Based on electrophysiology, electron and superresolution light microscopy, and modeling, we propose that uniquantal exocytosis shaped by a dynamic fusion pore is a candidate neurotransmitter release mechanism in IHCs. Modeling indicated that the extended postsynaptic AMPA receptor clusters enable large uniquantal EPSCs. Recorded multiphasic EPSCs were triggered by similar glutamate amounts as monophasic ones and were consistent with progressive vesicle emptying during pore flickering. The fraction of multiphasic EPSCs decreased in absence of Ca(2+) influx and upon application of the Ca(2+) channel modulator BayK8644. Our experiments and modeling did not support the two most popular multiquantal release interpretations of EPSC heterogeneity: (1) Ca(2+)-synchronized exocytosis of multiple vesicles and (2) compound exocytosis fueled by vesicle-to-vesicle fusion. We propose that IHC synapses efficiently use uniquantal glutamate release for achieving high information transmission rates.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Exocitosis , Células Ciliadas Auditivas Internas/metabolismo , Modelos Neurológicos , Neurotransmisores/metabolismo , Transmisión Sináptica/fisiología , Animales , Exocitosis/fisiología , Ratones , Ratones Endogámicos C57BL , Modelos Teóricos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar
5.
Nat Neurosci ; 12(4): 444-53, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19270686

RESUMEN

Cochlear inner hair cells (IHCs) transmit acoustic information to spiral ganglion neurons through ribbon synapses. Here we have used morphological and physiological techniques to ask whether synaptic mechanisms differ along the tonotopic axis and within IHCs in the mouse cochlea. We show that the number of ribbon synapses per IHC peaks where the cochlea is most sensitive to sound. Exocytosis, measured as membrane capacitance changes, scaled with synapse number when comparing apical and midcochlear IHCs. Synapses were distributed in the subnuclear portion of IHCs. High-resolution imaging of IHC synapses provided insights into presynaptic Ca(2+) channel clusters and Ca(2+) signals, synaptic ribbons and postsynaptic glutamate receptor clusters and revealed subtle differences in their average properties along the tonotopic axis. However, we observed substantial variability for presynaptic Ca(2+) signals, even within individual IHCs, providing a candidate presynaptic mechanism for the divergent dynamics of spiral ganglion neuron spiking.


Asunto(s)
Cóclea/citología , Cóclea/fisiología , Células Ciliadas Auditivas Internas/fisiología , Sinapsis/fisiología , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Estimulación Acústica/métodos , Oxidorreductasas de Alcohol , Animales , Animales Recién Nacidos , Calbindinas , Calcio/metabolismo , Agonistas de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Proteínas Co-Represoras , Proteínas de Unión al ADN/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Exocitosis/efectos de los fármacos , Exocitosis/fisiología , Gerbillinae , Células Ciliadas Auditivas Internas/ultraestructura , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Técnicas de Placa-Clamp , Fosfoproteínas/metabolismo , Psicoacústica , Receptores AMPA/metabolismo , Proteína G de Unión al Calcio S100/metabolismo , Sinapsis/ultraestructura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA