Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 17(23): e2007963, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33719187

RESUMEN

Mucosal surfaces pose a challenging environment for efficient drug delivery. Various delivery strategies such as nanoparticles have been employed so far; yet, still yielding limited success. To address the need of efficient transmucosal drug delivery, this report presents the synthesis of novel disulfide-containing dendritic polyglycerol (dPG)-based nanogels and their preclinical testing. A bifunctional disulfide-containing linker is coupled to dPG to act as a macromolecular crosslinker for poly-N-isopropylacrylamide (PNIPAM) and poly-N-isopropylmethacrylamide (PNIPMAM) in a precipitation polymerization process. A systematic analysis of the polymerization reveals the importance of a careful polymer choice to yield mucus-degradable nanogels with diameters between 100 and 200 nm, low polydispersity, and intact disulfide linkers. Absorption studies in porcine intestinal tissue and human bronchial epithelial models demonstrate that disulfide-containing nanogels are highly efficient in overcoming mucosal barriers. The nanogels efficiently degrade and deliver the anti-inflammatory biomacromolecule etanercept into epithelial tissues yielding local anti-inflammatory effects. Over the course of this work, several problems are encountered due to a limited availability of valid test systems for mucosal drug-delivery systems. Hence, this study also emphasizes how critical a combined and multifaceted approach is for the preclinical testing of mucosal drug-delivery systems, discusses potential pitfalls, and provides suggestions for solutions.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Animales , Sistemas de Liberación de Medicamentos , Humanos , Moco , Nanogeles , Polimerizacion , Porcinos
2.
J Mater Chem B ; 8(22): 4870-4882, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32108191

RESUMEN

Biomimetic magnetite nanoparticles (BMNPs) synthesized in the presence of MamC, a magnetosome-associated protein from Magnetoccus marinus MC-1, have gained interest for biomedical applications because of their unique magnetic properties. However, their behavior in biological systems, like their interaction with proteins, still has to be evaluated prior to their use in clinics. In this study, doxorubicin (DOXO) as a model drug was adsorbed onto BMNPs to form nanoassemblies. These were incubated with human plasma to trigger protein corona (PC) formation. Proteins from the human plasma stably attached to either BMNPs or DOXO-BMNP nanoassemblies. In particular, fibrinogen was detected as the main component in the PC of DOXO-BMNPs that potentially provides advantages, e.g. protecting the particles from phagocytosis, thus prolonging their circulation time. Adsorption of PC to the BMNPs did not alter their magnetic properties but improved their colloidal stability, thus reducing their toxicity in human macrophages. In addition, PC formation enhanced cellular internalization and did not interfere with DOXO activity. Overall, our data indicate that the adsorption of PC onto DOXO-BMNPs in biological environment even increases their efficiency as drug carrier systems.


Asunto(s)
Alphaproteobacteria/química , Antibióticos Antineoplásicos/química , Materiales Biomiméticos/química , Doxorrubicina/química , Nanopartículas de Magnetita/química , Corona de Proteínas/análisis , Adsorción , Antibióticos Antineoplásicos/farmacología , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Doxorrubicina/farmacología , Fibrinógeno/análisis , Células HeLa , Humanos , Tamaño de la Partícula , Propiedades de Superficie
3.
Mater Sci Eng C Mater Biol Appl ; 100: 141-151, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30948048

RESUMEN

Macromolecular bioactives, like proteins and peptides, emerged as highly efficient therapeutics. The main limitation for their clinical application is their instability and potential immunogenicity. Thus, controlled delivery systems able protect the proteins prior release are highly on demand. In the present study, we developed hydrophilic thermo-responsive nanogels with tunable volume phase transition temperatures (VPTTs) and suitable features for controlled protein delivery by the use of multifunctional, dendritic polyglycerol (dPG) as macromolecular cross-linker and temperature-sensitive polymers poly(N-isopropylacrylamide) (NIPAM) and poly(N-isopropylacrylmethacrylate) as linear counterpart. We comprehensively studied the impact of the initiator, monomers and cross-linker on the nanogel structure during the synthesis. Careful analysis of the polymerization process revealed importance of balanced reactions kinetics to form particles with diameters in the range 100-200 nm and low polydispersity. We can control the cross-linking density of the nanogels mainly by the dPG feed and its degree of acrylation. In addition, our screenings revealed that the hydrophilic character of dPG enables it to stabilize the growing particles during the polymerization and thereby reduces final particle size. Co-polymerization of NIPAM and NIPMAM allows precise tuning of the VPTT of the nanogels in the desired range of 34-47 °C. Our nanogels showed outstanding high protein encapsulation efficiency and triggered cargo release upon a temperature change. The delivery efficiency of these nanogels was investigated on excised human skin demonstrating efficient dermal penetration of encapsulated proteins dependent on a temperature triggered release mechanism.


Asunto(s)
Péptidos/metabolismo , Polietilenglicoles/química , Polietileneimina/química , Proteínas/metabolismo , Resinas Acrílicas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Portadores de Fármacos/química , Glicerol/química , Células HeLa , Humanos , Microscopía Fluorescente , Nanogeles , Péptidos/química , Polietilenglicoles/metabolismo , Polietileneimina/metabolismo , Polímeros/química , Proteínas/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA