Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 770: 144845, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33736390

RESUMEN

One of the largest "green tide" (Ulva prolifera) outbreaks in the world has occurred every year from 2007 to present in the Southern Yellow Sea, China. Currently, the coastal area around Jiangsu Province (Subei Shoal region) is thought to be the origination point of these giant green tide blooms. The combination of high nutrient demand but low river discharge and other inputs suggests that there is a significant flux of submarine groundwater discharge (SGD) in this area. By using a radium mass balance model, we estimated the SGD flux in the area to be (0.7-1.4) × 109 m3 d-1 (6.1-12 cm d-1), at the high end of SGD fluxes worldwide. Geographically, Subei Shoal is less than 5% of the entire Southern Yellow Sea area, while our calculated SGD flux just for the shoal area is ~3 times larger than previously documented for the whole Southern Yellow Sea. Therefore, Subei Shoal may be considered a SGD hotspot that plays an important role in SGD associated material fluxes. Compared to inputs from local rivers, atmospheric deposition, and anthropogenic activities, SGD-derived nutrients are the main source term that can support the growth of macroalgae. We specifically highlight that this type of areas that are shallow, intensively mixed, anthropogenically polluted, sandy or muddy with heavy bio-irrigation, may have a higher risk of suffering harmful ecological problems, even with limited terrestrial runoff.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , China , Nutrientes , Ríos
2.
Sci Total Environ ; 637-638: 1175-1186, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29801211

RESUMEN

Mercury inputs by surface and ground water sources to Penobscot River from a defunct Hg-cell chlor-alkali plant were measured in 2009-10 and estimated for the entire period of operation of this facility. Over the measured interval (422 days) approximately 2.3 kg (5.4 g day-1) of mercury was discharged to the Penobscot River by the two surface streams that drain the site, with most of the combined loading (1.8 kg Hg, 78%) associated with a single storm with rainfall in excess of 100 mm. Groundwater seepage rates from the site, as estimated from both a radon tracer and seepage meter methods were in the range of 3 to 4 cm day-1 and, when combined with a best estimate of the area of groundwater discharge (11,000 m2) and average seepage/porewater mercury concentration (242 ng L-1, UCL95), yielded a loading of 0.11 g day-1 for site groundwater. None of the municipal or other industrial point sources of mercury to the river between Veazie and Bucksport, Maine exceeded 1 g day-1 individually, nor was the aggregate loading of all such sources >3 g day-1 (based on State of Maine data). Mercury loadings for the three largest tributaries downstream of Veazie Dam were estimated to contribute 4.2, 3.7 and 2.5 g day-1, respectively, to the Penobscot River. Based on sampling (total Hg ~ 2 to 4 ng L-1) and historical mean discharge data (340-460 m3 s-1), the Penobscot River upstream of the plant site contributes as much as 160 g day-1 to the downstream reach depending on river discharge. Estimates of historical (1967-2012) mercury loading using both generic emission factors and measured releases ranged from 2.6 to 27 MT while the mass of mercury found in downstream sediments amounted to 9 MT.


Asunto(s)
Monitoreo del Ambiente , Mercurio/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos , Álcalis , Sedimentos Geológicos , Maine , Ríos/química
3.
Sci Total Environ ; 367(2-3): 498-543, 2006 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-16806406

RESUMEN

Submarine groundwater discharge (SGD) is now recognized as an important pathway between land and sea. As such, this flow may contribute to the biogeochemical and other marine budgets of near-shore waters. These discharges typically display significant spatial and temporal variability making assessments difficult. Groundwater seepage is patchy, diffuse, temporally variable, and may involve multiple aquifers. Thus, the measurement of its magnitude and associated chemical fluxes is a challenging enterprise. A joint project of UNESCO and the International Atomic Energy Agency (IAEA) has examined several methods of SGD assessment and carried out a series of five intercomparison experiments in different hydrogeologic environments (coastal plain, karst, glacial till, fractured crystalline rock, and volcanic terrains). This report reviews the scientific and management significance of SGD, measurement approaches, and the results of the intercomparison experiments. We conclude that while the process is essentially ubiquitous in coastal areas, the assessment of its magnitude at any one location is subject to enough variability that measurements should be made by a variety of techniques and over large enough spatial and temporal scales to capture the majority of these changing conditions. We feel that all the measurement techniques described here are valid although they each have their own advantages and disadvantages. It is recommended that multiple approaches be applied whenever possible. In addition, a continuing effort is required in order to capture long-period tidal fluctuations, storm effects, and seasonal variations.


Asunto(s)
Ecología/métodos , Ambiente , Agua Dulce , Movimientos del Agua , Brasil , Ecología/estadística & datos numéricos , Geografía , Italia , Mauricio , New York , Naciones Unidas , Australia Occidental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA