Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(7)2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38744470

RESUMEN

Developing effective tuberculosis drugs is hindered by mycobacteria's intrinsic antibiotic resistance because of their impermeable cell envelope. Using benzothiazole compounds, we aimed to increase mycobacterial cell envelope permeability and weaken the defenses of Mycobacterium marinum, serving as a model for Mycobacterium tuberculosis Initial hit, BT-08, significantly boosted ethidium bromide uptake, indicating enhanced membrane permeability. It also demonstrated efficacy in the M. marinum-zebrafish embryo infection model and M. tuberculosis-infected macrophages. Notably, BT-08 synergized with established antibiotics, including vancomycin and rifampicin. Subsequent medicinal chemistry optimization led to BT-37, a non-toxic and more potent derivative, also enhancing ethidium bromide uptake and maintaining synergy with rifampicin in infected zebrafish embryos. Mutants of M. marinum resistant to BT-37 revealed that MMAR_0407 (Rv0164) is the molecular target and that this target plays a role in the observed synergy and permeability. This study introduces novel compounds targeting a new mycobacterial vulnerability and highlights their cooperative and synergistic interactions with existing antibiotics.


Asunto(s)
Benzotiazoles , Sinergismo Farmacológico , Mycobacterium marinum , Pez Cebra , Animales , Benzotiazoles/farmacología , Mycobacterium marinum/efectos de los fármacos , Antituberculosos/farmacología , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Humanos , Antibacterianos/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Macrófagos/metabolismo , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Rifampin/farmacología
2.
Nat Microbiol ; 9(7): 1778-1791, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38783023

RESUMEN

Antimicrobial resistance is a leading cause of mortality, calling for the development of new antibiotics. The fungal antibiotic plectasin is a eukaryotic host defence peptide that blocks bacterial cell wall synthesis. Here, using a combination of solid-state nuclear magnetic resonance, atomic force microscopy and activity assays, we show that plectasin uses a calcium-sensitive supramolecular killing mechanism. Efficient and selective binding of the target lipid II, a cell wall precursor with an irreplaceable pyrophosphate, is achieved by the oligomerization of plectasin into dense supra-structures that only form on bacterial membranes that comprise lipid II. Oligomerization and target binding of plectasin are interdependent and are enhanced by the coordination of calcium ions to plectasin's prominent anionic patch, causing allosteric changes that markedly improve the activity of the antibiotic. Structural knowledge of how host defence peptides impair cell wall synthesis will likely enable the development of superior drug candidates.


Asunto(s)
Calcio , Pared Celular , Péptidos , Uridina Difosfato Ácido N-Acetilmurámico , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/química , Calcio/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Péptidos/química , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo , Uridina Difosfato Ácido N-Acetilmurámico/química , Microscopía de Fuerza Atómica , Antibacterianos/farmacología , Antibacterianos/química , Espectroscopía de Resonancia Magnética , Unión Proteica
3.
J Chem Theory Comput ; 18(6): 4027-4040, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35652781

RESUMEN

An emerging class of therapeutic molecules are cyclic peptides with over 40 cyclic peptide drugs currently in clinical use. Their mode of action is, however, not fully understood, impeding rational drug design. Computational techniques could positively impact their design, but modeling them and their interactions remains challenging due to their cyclic nature and their flexibility. This study presents a step-by-step protocol for generating cyclic peptide conformations and docking them to their protein target using HADDOCK2.4. A dataset of 30 cyclic peptide-protein complexes was used to optimize both cyclization and docking protocols. It supports peptides cyclized via an N- and C-terminus peptide bond and/or a disulfide bond. An ensemble of cyclic peptide conformations is then used in HADDOCK to dock them onto their target protein using knowledge of the binding site on the protein side to drive the modeling. The presented protocol predicts at least one acceptable model according to the critical assessment of prediction of interaction criteria for each complex of the dataset when the top 10 HADDOCK-ranked single structures are considered (100% success rate top 10) both in the bound and unbound docking scenarios. Moreover, its performance in both bound and fully unbound docking is similar to the state-of-the-art software in the field, Autodock CrankPep. The presented cyclization and docking protocol should make HADDOCK a valuable tool for rational cyclic peptide-based drug design and high-throughput screening.


Asunto(s)
Péptidos Cíclicos , Proteínas , Ciclización , Simulación del Acoplamiento Molecular , Péptidos Cíclicos/metabolismo , Unión Proteica , Conformación Proteica , Proteínas/química , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA