Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ecol Appl ; 32(8): e2702, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35751522

RESUMEN

Coastal wetlands are globally important stores of carbon (C). However, accelerated sea-level rise (SLR), increased saltwater intrusion, and modified freshwater discharge can contribute to the collapse of peat marshes, converting coastal peatlands into open water. Applying results from multiple experiments from sawgrass (Cladium jamaicense)-dominated freshwater and brackish water marshes in the Florida Coastal Everglades, we developed a system-level mechanistic peat elevation model (EvPEM). We applied the model to simulate net ecosystem C balance (NECB) and peat elevation in response to elevated salinity under inundation and drought exposure. Using a mass C balance approach, we estimated net gain in C and corresponding export of aquatic fluxes ( F AQ $$ {F}_{\mathrm{AQ}} $$ ) in the freshwater marsh under ambient conditions (NECB = 1119 ± 229 gC m-2  year-1 ; FAQ  = 317 ± 186 gC m-2  year-1 ). In contrast, the brackish water marsh exhibited substantial peat loss and aquatic C export with ambient (NECB = -366 ± 15 gC m-2  year-1 ; FAQ  = 311 ± 30 gC m-2  year-1 ) and elevated salinity (NECB = -594 ± 94 gC m-2  year-1 ; FAQ  = 729 ± 142 gC m-2  year-1 ) under extended exposed conditions. Further, mass balance suggests a considerable decline in soil C and corresponding elevation loss with elevated salinity and seasonal dry-down. Applying EvPEM, we developed critical marsh net primary productivity (NPP) thresholds as a function of salinity to simulate accumulating, steady-state, and collapsing peat elevations. The optimization showed that ~150-1070 gC m-2  year-1 NPP could support a stable peat elevation (elevation change ≈ SLR), with the corresponding salinity ranging from 1 to 20 ppt under increasing inundation levels. The C budgeting and modeling illustrate the impacts of saltwater intrusion, inundation, and seasonal dry-down and reduce uncertainties in understanding the fate of coastal peat wetlands with SLR and freshwater restoration. The modeling results provide management targets for hydrologic restoration based on the ecological conditions needed to reduce the vulnerability of the Everglades' peat marshes to collapse. The approach can be extended to other coastal peatlands to quantify C loss and improve understanding of the influence of the biological controls on wetland C storage changes for coastal management.


Asunto(s)
Elevación del Nivel del Mar , Humedales , Ecosistema , Carbono , Suelo
2.
Ecol Appl ; 30(3): e02067, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31872508

RESUMEN

Saltwater intrusion has particularly large impacts on karstic wetlands of the Caribbean Basin due to their porous, carbonate bedrock and low elevation. Increases in salinity and phosphorus (P) accompanying saltwater intrusion into these freshwater, P-limited wetlands are expected to alter biogeochemical cycles along with the structure and function of plant and algal communities. Calcareous periphyton is a characteristic feature of karstic wetlands and plays a central role in trophic dynamics, carbon storage, and nutrient cycling. Periphyton is extremely sensitive to water quality and quantity, but the effects of saltwater intrusion on these microbial mats remain to be understood. We conducted an ex situ mesocosm experiment to test the independent and combined effects of elevated salinity and P on the productivity, nutrient content, and diatom composition of calcareous periphyton from the Florida Everglades. We measured periphyton total carbon, nitrogen, and P concentrations and used settlement plates to measure periphyton accumulation rates and diatom species composition. The light and dark bottle method was used to measure periphyton productivity and respiration. We found that exposure to ~1 g P·m-2 ·yr-1 significantly increased periphyton mat total P concentrations, but had no effect on any other response variable. Mats exposed to elevated salinity (~22 kg salt·m-2 ·yr-1 ) had significantly lower total carbon and tended to have lower biomass and reduced productivity and respiration rates; however, mats exposed to salinity and P simultaneously had greater gross and net productivity. We found strong diatom species dissimilarity between fresh- and saltwater-treated periphyton, while P additions only elicited compositional changes in periphyton also treated with saltwater. This study contributes to our understanding of how the ecologically important calcareous periphyton mats unique to karstic, freshwater wetlands respond to increased salinity and P caused saltwater intrusion and provides a guide to diatom indicator taxa for these two important environmental drivers.


Asunto(s)
Perifiton , Humedales , Región del Caribe , Florida , Agua Dulce
3.
Ecology ; 98(3): 762-772, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27984665

RESUMEN

Global changes are causing broad-scale shifts in vegetation communities worldwide, including coastal habitats where the borders between mangroves and salt marsh are in flux. Coastal habitats provide numerous ecosystem services of high economic value, but the consequences of variation in mangrove cover are poorly known. We experimentally manipulated mangrove cover in large plots to test a set of linked hypotheses regarding the effects of changes in mangrove cover. We found that changes in mangrove cover had strong effects on microclimate, plant community, sediment accretion, soil organic content, and bird abundance within 2 yr. At higher mangrove cover, wind speed declined and light interception by vegetation increased. Air and soil temperatures had hump-shaped relationships with mangrove cover. The cover of salt marsh plants decreased at higher mangrove cover. Wrack cover, the distance that wrack was distributed from the water's edge, and sediment accretion decreased at higher mangrove cover. Soil organic content increased with mangrove cover. Wading bird abundance decreased at higher mangrove cover. Many of these relationships were non-linear, with the greatest effects when mangrove cover varied from zero to intermediate values, and lesser effects when mangrove cover varied from intermediate to high values. Temporal and spatial variation in measured variables often peaked at intermediate mangrove cover, with ecological consequences that are largely unexplored. Because different processes varied in different ways with mangrove cover, the "optimum" cover of mangroves from a societal point of view will depend on which ecosystem services are most desired.


Asunto(s)
Cambio Climático , Humedales , Ecosistema , Suelo , Temperatura
4.
Ecology ; 101(2): e02916, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31646613

RESUMEN

Despite overall global declines, mangroves are expanding into and within many subtropical wetlands, leading to heterogeneous cover of marsh-mangrove coastal vegetation communities near the poleward edge of mangroves' ranges. Coastal wetlands are globally important carbon sinks, yet the effects of shifts in mangrove cover on organic-carbon (OC) storage remains uncertain. We experimentally maintained black mangrove (Avicennia germinans) or marsh vegetation in patches (n = 1,120, 3 × 3 m) along a gradient in mangrove cover (0-100%) within coastal wetland plots (n = 10, 24 × 42 m) and measured changes in OC stocks and fluxes. Within patches, above and belowground biomass (OC) was 1,630% and 61% greater for mangroves than for recolonized marshes, and soil OC was 30% greater beneath mangrove than marsh vegetation. At the plot scale, above and belowground biomass increased linearly with mangrove cover but soil OC was highly variable and unrelated to mangrove cover. Root ingrowth was not different in mangrove or marsh patches, nor did it change with mangrove cover. After 11 months, surface OC accretion was negatively related to plot-scale mangrove cover following a high-wrack deposition period. However, after 22 months, accretion was 54% higher in mangrove patches, and there was no relationship to plot-scale mangrove cover. Marsh (Batis maritima) leaf and root litter had 1,000% and 35% faster breakdown rates (k) than mangrove (A. germinans) leaf and root litter. Soil temperatures beneath mangroves were 1.4°C lower, decreasing aboveground k of fast- (cellulose) and slow-decomposing (wood) standard substrates. Wood k in shallow soil (0-15 cm) was higher in mangrove than marsh patches, but vegetation identity did not impact k in deeper soil (15-30 cm). We found that mangrove cover enhanced OC storage by increasing biomass, creating more recalcitrant organic matter and reducing k on the soil surface by altering microclimate, despite increasing wood k belowground and decreasing allochthonous OC subsidies. Our results illustrate the importance of mangroves in maintaining coastal OC storage, but also indicate that the impacts of vegetation change on OC storage may vary based on ecosystem conditions, organic-matter sources, and the relative spatiotemporal scales of mangrove vegetation change.


Asunto(s)
Avicennia , Humedales , Carbono , Cambio Climático , Ecosistema
5.
Ecology ; 100(5): e02672, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30942486

RESUMEN

Saltwater intrusion and salinization of coastal wetlands around the world are becoming a pressing issue due to sea level rise. Here, we assessed how a freshwater coastal wetland ecosystem responds to saltwater intrusion. In wetland mesocosms, we continuously exposed Cladium jamaicense Crantz (sawgrass) plants and their peat soil collected from a freshwater marsh to two factors associated with saltwater intrusion in karstic ecosystems: elevated loading of salinity and phosphorus (P) inputs. We took repeated measures using a 2 × 2 factorial experimental design (n = 6) with treatments composed of elevated salinity (~9 ppt), P loading (14.66 µmol P/d), or a combination of both. We measured changes in water physicochemistry, ecosystem productivity, and plant biomass change over two years to assess monthly and two-year responses to saltwater intrusion. In the short-term, plants exhibited positive growth responses with simulated saltwater intrusion (salinity + P), driven by increased P availability. Despite relatively high salinity levels for a freshwater marsh (~9 ppt), gross ecosystem productivity (GEP), net ecosystem productivity (NEP), and aboveground biomass were significantly higher in the elevated salinity + P treated monoliths compared to the freshwater controls. Salinity stress became evident after extended exposure. Although still higher than freshwater controls, GEP and NEP were significantly lower in the elevated salinity + P treatment than the +P treatment after two years. However, elevated salinity decreased live root biomass regardless of whether P was added. Our results suggest that saltwater intrusion into karstic freshwater wetlands may initially act as a subsidy by stimulating aboveground primary productivity of marsh plants. However, chronic exposure to elevated salinity results in plant stress, negatively impacting belowground peat soil structure and stability through a reduction in plant roots.


Asunto(s)
Suelo , Humedales , Ecosistema , Agua Dulce , Fósforo , Salinidad , Estrés Salino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA