Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(7): 1744-1755.e15, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30503208

RESUMEN

Tumor-infiltrating CD8 T cells were found to frequently express the inhibitory receptor NKG2A, particularly in immune-reactive environments and after therapeutic cancer vaccination. High-dimensional cluster analysis demonstrated that NKG2A marks a unique immune effector subset preferentially co-expressing the tissue-resident CD103 molecule, but not immune checkpoint inhibitors. To examine whether NKG2A represented an adaptive resistance mechanism to cancer vaccination, we blocked the receptor with an antibody and knocked out its ligand Qa-1b, the conserved ortholog of HLA-E, in four mouse tumor models. The impact of therapeutic vaccines was greatly potentiated by disruption of the NKG2A/Qa-1b axis even in a PD-1 refractory mouse model. NKG2A blockade therapy operated through CD8 T cells, but not NK cells. These findings indicate that NKG2A-blocking antibodies might improve clinical responses to therapeutic cancer vaccines.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer , Inmunidad Celular , Subfamília C de Receptores Similares a Lectina de Células NK , Proteínas de Neoplasias , Neoplasias Experimentales , Vacunación , Animales , Anticuerpos Antineoplásicos/inmunología , Antígenos CD/inmunología , Linfocitos T CD8-positivos/patología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/farmacología , Línea Celular Tumoral , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Cadenas alfa de Integrinas/inmunología , Ratones , Subfamília C de Receptores Similares a Lectina de Células NK/antagonistas & inhibidores , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Antígenos HLA-E
2.
Mol Cell Proteomics ; 23(9): 100825, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111711

RESUMEN

Personalized cancer immunotherapies such as therapeutic vaccines and adoptive transfer of T cell receptor-transgenic T cells rely on the presentation of tumor-specific peptides by human leukocyte antigen class I molecules to cytotoxic T cells. Such neoepitopes can for example arise from somatic mutations and their identification is crucial for the rational design of new therapeutic interventions. Liquid chromatography mass spectrometry (LC-MS)-based immunopeptidomics is the only method to directly prove actual peptide presentation and we have developed a parameter optimization workflow to tune targeted assays for maximum detection sensitivity on a per peptide basis, termed optiPRM. Optimization of collision energy using optiPRM allows for the improved detection of low abundant peptides that are very hard to detect using standard parameters. Applying this to immunopeptidomics, we detected a neoepitope in a patient-derived xenograft from as little as 2.5 × 106 cells input. Application of the workflow on small patient tumor samples allowed for the detection of five mutation-derived neoepitopes in three patients. One neoepitope was confirmed to be recognized by patient T cells. In conclusion, optiPRM, a targeted MS workflow reaching ultra-high sensitivity by per peptide parameter optimization, makes the identification of actionable neoepitopes possible from sample sizes usually available in the clinic.

3.
Br J Cancer ; 131(2): 205-211, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729996

RESUMEN

Multi-omics experiments at bulk or single-cell resolution facilitate the discovery of hypothesis-generating biomarkers for predicting response to therapy, as well as aid in uncovering mechanistic insights into cellular and microenvironmental processes. Many methods for data integration have been developed for the identification of key elements that explain or predict disease risk or other biological outcomes. The heterogeneous graph representation of multi-omics data provides an advantage for discerning patterns suitable for predictive/exploratory analysis, thus permitting the modeling of complex relationships. Graph-based approaches-including graph neural networks-potentially offer a reliable methodological toolset that can provide a tangible alternative to scientists and clinicians that seek ideas and implementation strategies in the integrated analysis of their omics sets for biomedical research. Graph-based workflows continue to push the limits of the technological envelope, and this perspective provides a focused literature review of research articles in which graph machine learning is utilized for integrated multi-omics data analyses, with several examples that demonstrate the effectiveness of graph-based approaches.


Asunto(s)
Aprendizaje Automático , Humanos , Genómica/métodos , Redes Neurales de la Computación , Proteómica/métodos , Neoplasias/genética , Biología Computacional/métodos , Multiómica
4.
Int J Cancer ; 150(4): 688-704, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34716584

RESUMEN

The surface inhibitory receptor NKG2A forms heterodimers with the invariant CD94 chain and is expressed on a subset of activated CD8 T cells. As antibodies to block NKG2A are currently tested in several efficacy trials for different tumor indications, it is important to characterize the NKG2A+ CD8 T cell population in the context of other inhibitory receptors. Here we used a well-controlled culture system to study the kinetics of inhibitory receptor expression. Naïve mouse CD8 T cells were synchronously and repeatedly activated by artificial antigen presenting cells in the presence of the homeostatic cytokine IL-7. The results revealed NKG2A as a late inhibitory receptor, expressed after repeated cognate antigen stimulations. In contrast, the expression of PD-1, TIGIT and LAG-3 was rapidly induced, hours after first contact and subsequently down regulated during each resting phase. This late, but stable expression kinetics of NKG2A was most similar to that of TIM-3 and CD39. Importantly, single-cell transcriptomics of human tumor-infiltrating lymphocytes (TILs) showed indeed that these receptors were often coexpressed by the same CD8 T cell cluster. Furthermore, NKG2A expression was associated with cell division and was promoted by TGF-ß in vitro, although TGF-ß signaling was not necessary in a mouse tumor model in vivo. In summary, our data show that PD-1 reflects recent TCR triggering, but that NKG2A is induced after repeated antigen stimulations and represents a late inhibitory receptor. Together with TIM-3 and CD39, NKG2A might thus mark actively dividing tumor-specific TILs.


Asunto(s)
Proteínas de Punto de Control Inmunitario/fisiología , Subfamília C de Receptores Similares a Lectina de Células NK/fisiología , Animales , Antígenos CD/fisiología , Linfocitos T CD8-positivos/inmunología , División Celular , Receptor 2 Celular del Virus de la Hepatitis A/fisiología , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/fisiología , Receptores Inmunológicos/fisiología , Factor de Crecimiento Transformador beta/farmacología , Microambiente Tumoral , Proteína del Gen 3 de Activación de Linfocitos
5.
Nat Rev Genet ; 17(8): 441-58, 2016 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27376489

RESUMEN

Recent breakthroughs in cancer immunotherapy and decreasing costs of high-throughput technologies have sparked intensive research into tumour-immune cell interactions using genomic tools. The wealth of the generated data and the added complexity pose considerable challenges and require computational tools to process, to analyse and to visualize the data. Recently, various tools have been developed and used to mine tumour immunologic and genomic data effectively and to provide novel mechanistic insights. Here, we review computational genomics tools for cancer immunology and provide information on the requirements and functionality in order to assist in the selection of tools and assembly of analytical pipelines.


Asunto(s)
Comunicación Celular/inmunología , Quimiocinas/inmunología , Biología Computacional/métodos , Genómica/métodos , Neoplasias/inmunología , Neoplasias/metabolismo , Animales , Humanos , Neoplasias/genética
6.
PLoS Med ; 16(1): e1002730, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30677016

RESUMEN

BACKGROUND: For virtually every patient with colorectal cancer (CRC), hematoxylin-eosin (HE)-stained tissue slides are available. These images contain quantitative information, which is not routinely used to objectively extract prognostic biomarkers. In the present study, we investigated whether deep convolutional neural networks (CNNs) can extract prognosticators directly from these widely available images. METHODS AND FINDINGS: We hand-delineated single-tissue regions in 86 CRC tissue slides, yielding more than 100,000 HE image patches, and used these to train a CNN by transfer learning, reaching a nine-class accuracy of >94% in an independent data set of 7,180 images from 25 CRC patients. With this tool, we performed automated tissue decomposition of representative multitissue HE images from 862 HE slides in 500 stage I-IV CRC patients in the The Cancer Genome Atlas (TCGA) cohort, a large international multicenter collection of CRC tissue. Based on the output neuron activations in the CNN, we calculated a "deep stroma score," which was an independent prognostic factor for overall survival (OS) in a multivariable Cox proportional hazard model (hazard ratio [HR] with 95% confidence interval [CI]: 1.99 [1.27-3.12], p = 0.0028), while in the same cohort, manual quantification of stromal areas and a gene expression signature of cancer-associated fibroblasts (CAFs) were only prognostic in specific tumor stages. We validated these findings in an independent cohort of 409 stage I-IV CRC patients from the "Darmkrebs: Chancen der Verhütung durch Screening" (DACHS) study who were recruited between 2003 and 2007 in multiple institutions in Germany. Again, the score was an independent prognostic factor for OS (HR 1.63 [1.14-2.33], p = 0.008), CRC-specific OS (HR 2.29 [1.5-3.48], p = 0.0004), and relapse-free survival (RFS; HR 1.92 [1.34-2.76], p = 0.0004). A prospective validation is required before this biomarker can be implemented in clinical workflows. CONCLUSIONS: In our retrospective study, we show that a CNN can assess the human tumor microenvironment and predict prognosis directly from histopathological images.


Asunto(s)
Neoplasias Colorrectales/diagnóstico , Aprendizaje Profundo , Colon/patología , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Colorantes , Eosina Amarillenta-(YS) , Femenino , Hematoxilina , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Pronóstico , Recto/patología , Estudios Retrospectivos
7.
Bioinformatics ; 33(19): 3140-3141, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28633385

RESUMEN

SUMMARY: Recently, a number of powerful computational tools for dissecting tumor-immune cell interactions from next-generation sequencing data have been developed. However, the assembly of analytical pipelines and execution of multi-step workflows are laborious and involve a large number of intermediate steps with many dependencies and parameter settings. Here we present TIminer, an easy-to-use computational pipeline for mining tumor-immune cell interactions from next-generation sequencing data. TIminer enables integrative immunogenomic analyses, including: human leukocyte antigens typing, neoantigen prediction, characterization of immune infiltrates and quantification of tumor immunogenicity. AVAILABILITY AND IMPLEMENTATION: TIminer is freely available at http://icbi.i-med.ac.at/software/timiner/timiner.shtml. CONTACT: zlatko.trajanoski@i-med.ac.at. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias/inmunología , Programas Informáticos , Minería de Datos , Humanos , Fenómenos Inmunogenéticos , Inmunoterapia , Neoplasias/genética , Neoplasias/terapia , Flujo de Trabajo
8.
BMC Cancer ; 14: 257, 2014 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-24725474

RESUMEN

BACKGROUND: STAT1 has been attributed a function as tumor suppressor. However, in breast cancer data from microarray analysis indicated a predictive value of high mRNA expression levels of STAT1 and STAT1 target genes belonging to the interferon-related signature for a poor response to therapy. To clarify this issue we have determined STAT1 expression levels and activation by different methods, and investigated their association with tumor infiltration by immune cells. Additionally, we evaluated the interrelationship of these parameters and their significance for predicting disease outcome. METHODS: Expression of STAT1, its target genes SOCS1, IRF1, CXCL9, CXCL10, CXCL11, IFIT1, IFITM1, MX1 and genes characteristic for immune cell infiltration (CD68, CD163, PD-L1, PD-L2, PD-1, CD45, IFN-γ, FOXP3) was determined by RT-PCR in two independent cohorts comprising 132 breast cancer patients. For a subset of patients, protein levels of total as well as serine and tyrosine-phosphorylated STAT1 were ascertained by immunohistochemistry or immunoblotting and protein levels of CXCL10 by ELISA. RESULTS: mRNA expression levels of STAT1 and STAT1 target genes, as well as protein levels of total and serine-phosphorylated STAT1 correlated with each other in neoplastic tissue. However, there was no association between tumor levels of STAT1 mRNA and tyrosine-phosphorylated STAT1 and between CXCL10 serum levels and CXCL10 expression in the tumor. Tumors with increased STAT1 mRNA amounts exhibited elevated expression of genes characteristic for tumor-associated macrophages and immunosuppressive T lymphocytes. Survival analysis revealed an association of high STAT1 mRNA levels and bad prognosis in both cohorts. A similar prognostically relevant correlation with unfavorable outcome was evident for CXCL10, MX1, CD68, CD163, IFN-γ, and PD-L2 expression in at least one collective. By contrast, activation of STAT1 as assessed by the level of STAT1-Y701 phosphorylation was linked to positive outcome. In multivariate Cox regression, the predictive power of STAT1 mRNA expression was lost when including expression of CXCL10, MX1 and CD68 as confounders. CONCLUSIONS: Our study confirms distinct prognostic relevance of STAT1 expression levels and STAT1 tyrosine phosphorylation in breast cancer patients and identifies an association of high STAT1 levels with elevated expression of STAT1 target genes and markers for infiltrating immune cells.


Asunto(s)
Neoplasias de la Mama/genética , ARN Mensajero/biosíntesis , Factor de Transcripción STAT1/biosíntesis , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/patología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Persona de Mediana Edad , Fosforilación/genética , Pronóstico , ARN Mensajero/genética , Factor de Transcripción STAT1/genética , Transducción de Señal/genética , Tirosina/genética
9.
BMC Genomics ; 14: 224, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23557329

RESUMEN

BACKGROUND: Cellular senescence can be induced by a variety of extrinsic stimuli, and sustained exposure to sunlight is a key factor in photoaging of the skin. Accordingly, irradiation of skin fibroblasts by UVB light triggers cellular senescence, which is thought to contribute to extrinsic skin aging, although molecular mechanisms are incompletely understood. Here, we addressed molecular mechanisms underlying UVB induced senescence of human diploid fibroblasts. RESULTS: We observed a parallel activation of the p53/p21(WAF1) and p16(INK4a)/pRb pathways. Using genome-wide transcriptome analysis, we identified a transcriptional signature of UVB-induced senescence that was conserved in three independent strains of human diploid fibroblasts (HDF) from skin. In parallel, a comprehensive screen for microRNAs regulated during UVB-induced senescence was performed which identified five microRNAs that are significantly regulated during the process. Bioinformatic analysis of miRNA-mRNA networks was performed to identify new functional mRNA targets with high confidence for miR-15a, miR-20a, miR-20b, miR-93, and miR-101. Already known targets of these miRNAs were identified in each case, validating the approach. Several new targets were identified for all of these miRNAs, with the potential to provide new insight in the process of UVB-induced senescence at a genome-wide level. Subsequent analysis was focused on miR-101 and its putative target gene Ezh2. We confirmed that Ezh2 is regulated by miR-101 in human fibroblasts, and found that both overexpression of miR-101 and downregulation of Ezh2 independently induce senescence in the absence of UVB irradiation. However, the downregulation of miR-101 was not sufficient to block the phenotype of UVB-induced senescence, suggesting that other UVB-induced processes induce the senescence response in a pathway redundant with upregulation of miR-101. CONCLUSION: We performed a comprehensive screen for UVB-regulated microRNAs in human diploid fibroblasts, and identified a network of miRNA-mRNA interactions mediating UVB-induced senescence. In addition, miR-101 and Ezh2 were identified as key players in UVB-induced senescence of HDF.


Asunto(s)
Senescencia Celular/genética , Fibroblastos/metabolismo , MicroARNs/fisiología , Complejo Represivo Polycomb 2/genética , ARN Mensajero/genética , Línea Celular Tumoral , Senescencia Celular/efectos de la radiación , Diploidia , Proteína Potenciadora del Homólogo Zeste 2 , Fibroblastos/efectos de la radiación , Redes Reguladoras de Genes/efectos de la radiación , Humanos , Complejo Represivo Polycomb 2/metabolismo , Interferencia de ARN/efectos de la radiación , Transcriptoma/efectos de la radiación , Rayos Ultravioleta
10.
J Immunother Cancer ; 11(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36914207

RESUMEN

BACKGROUND: Primary and secondary resistance is a major hurdle in cancer immunotherapy. Therefore, a better understanding of the underlying mechanisms involved in immunotherapy resistance is of pivotal importance to improve therapy outcome. METHOD: Here, two mouse models with resistance against therapeutic vaccine-induced tumor regression were studied. Exploration of the tumor microenvironment by high dimensional flow cytometry in combination with therapeutic in vivo settings allowed for the identification of immunological factors driving immunotherapy resistance. RESULTS: Comparison of the tumor immune infiltrate during early and late regression revealed a change from tumor-rejecting toward tumor-promoting macrophages. In concert, a rapid exhaustion of tumor-infiltrating T cells was observed. Perturbation studies identified a small but discernible CD163hi macrophage population, with high expression of several tumor-promoting macrophage markers and a functional anti-inflammatory transcriptome profile, but not other macrophages, to be responsible. In-depth analyses revealed that they localize at the tumor invasive margins and are more resistant to Csf1r inhibition when compared with other macrophages. In vivo studies validated the activity of heme oxygenase-1 as an underlying mechanism of immunotherapy resistance. The transcriptomic profile of CD163hi macrophages is highly similar to a human monocyte/macrophage population, indicating that they represent a target to improve immunotherapy efficacy. CONCLUSIONS: In this study, a small population of CD163hi tissue-resident macrophages is identified to be responsible for primary and secondary resistance against T-cell-based immunotherapies. While these CD163hi M2 macrophages are resistant to Csf1r-targeted therapies, in-depth characterization and identification of the underlying mechanisms driving immunotherapy resistance allows the specific targeting of this subset of macrophages, thereby creating new opportunities for therapeutic intervention with the aim to overcome immunotherapy resistance.


Asunto(s)
Neoplasias , Linfocitos T , Animales , Ratones , Humanos , Inmunoterapia/métodos , Neoplasias/patología , Macrófagos , Microambiente Tumoral
11.
Front Immunol ; 14: 1294565, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239352

RESUMEN

Peptide-loaded MHC class I (pMHC-I) multimers have revolutionized our capabilities to monitor disease-associated T cell responses with high sensitivity and specificity. To improve the discovery of T cell receptors (TCR) targeting neoantigens of individual tumor patients with recombinant MHC molecules, we developed a peptide-loadable MHC class I platform termed MediMer. MediMers are based on soluble disulfide-stabilized ß2-microglobulin/heavy chain ectodomain single-chain dimers (dsSCD) that can be easily produced in large quantities in eukaryotic cells and tailored to individual patients' HLA allotypes with only little hands-on time. Upon transient expression in CHO-S cells together with ER-targeted BirA biotin ligase, biotinylated dsSCD are purified from the cell supernatant and are ready to use. We show that CHO-produced dsSCD are free of endogenous peptide ligands. Empty dsSCD from more than 30 different HLA-A,B,C allotypes, that were produced and validated so far, can be loaded with synthetic peptides matching the known binding criteria of the respective allotypes, and stored at low temperature without loss of binding activity. We demonstrate the usability of peptide-loaded dsSCD multimers for the detection of human antigen-specific T cells with comparable sensitivities as multimers generated with peptide-tethered ß2m-HLA heavy chain single-chain trimers (SCT) and wild-type peptide-MHC-I complexes prior formed in small-scale refolding reactions. Using allotype-specific, fluorophore-labeled competitor peptides, we present a novel dsSCD-based peptide binding assay capable of interrogating large libraries of in silico predicted neoepitope peptides by flow cytometry in a high-throughput and rapid format. We discovered rare T cell populations with specificity for tumor neoepitopes and epitopes from shared tumor-associated antigens in peripheral blood of a melanoma patient including a so far unreported HLA-C*08:02-restricted NY-ESO-1-specific CD8+ T cell population. Two representative TCR of this T cell population, which could be of potential value for a broader spectrum of patients, were identified by dsSCD-guided single-cell sequencing and were validated by cognate pMHC-I multimer staining and functional responses to autologous peptide-pulsed antigen presenting cells. By deploying the technically accessible dsSCD MHC-I MediMer platform, we hope to significantly improve success rates for the discovery of personalized neoepitope-specific TCR in the future by being able to also cover rare HLA allotypes.


Asunto(s)
Linfocitos T CD8-positivos , Péptidos , Humanos , Receptores de Antígenos de Linfocitos T , Antígenos HLA/metabolismo , Antígenos de Neoplasias
12.
Cancer Immunol Immunother ; 61(11): 1885-903, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22986455

RESUMEN

Recent mechanistic insights obtained from preclinical studies and the approval of the first immunotherapies has motivated increasing number of academic investigators and pharmaceutical/biotech companies to further elucidate the role of immunity in tumor pathogenesis and to reconsider the role of immunotherapy. Additionally, technological advances (e.g., next-generation sequencing) are providing unprecedented opportunities to draw a comprehensive picture of the tumor genomics landscape and ultimately enable individualized treatment. However, the increasing complexity of the generated data and the plethora of bioinformatics methods and tools pose considerable challenges to both tumor immunologists and clinical oncologists. In this review, we describe current concepts and future challenges for the management and analysis of data for cancer immunology and immunotherapy. We first highlight publicly available databases with specific focus on cancer immunology including databases for somatic mutations and epitope databases. We then give an overview of the bioinformatics methods for the analysis of next-generation sequencing data (whole-genome and exome sequencing), epitope prediction tools as well as methods for integrative data analysis and network modeling. Mathematical models are powerful tools that can predict and explain important patterns in the genetic and clinical progression of cancer. Therefore, a survey of mathematical models for tumor evolution and tumor-immune cell interaction is included. Finally, we discuss future challenges for individualized immunotherapy and suggest how a combined computational/experimental approaches can lead to new insights into the molecular mechanisms of cancer, improved diagnosis, and prognosis of the disease and pinpoint novel therapeutic targets.


Asunto(s)
Biología Computacional/métodos , Inmunoterapia , Neoplasias/inmunología , Neoplasias/terapia , Linfocitos B/inmunología , Secuencia de Bases , Bases de Datos Genéticas , Epítopos/inmunología , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Neoplasias/genética , Análisis de Secuencia de ADN , Linfocitos T/inmunología
13.
J Immunother Cancer ; 10(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35217577

RESUMEN

BACKGROUND: The composition of the tumor immune microenvironment (TIME) associated with good prognosis generally also predicts the success of immunotherapy, and both entail the presence of pre-existing tumor-specific T cells. Here, the blueprint of the TIME associated with such an ongoing tumor-specific T-cell response was dissected in a unique prospective oropharyngeal squamous cell carcinoma (OPSCC) cohort, in which tumor-specific tumor-infiltrating T cells were detected (immune responsiveness (IR+)) or not (lack of immune responsiveness (IR-)). METHODS: A comprehensive multimodal, high-dimensional strategy was applied to dissect the TIME of treatment-naive IR+ and IR- OPSCC tissue, including bulk RNA sequencing (NanoString), imaging mass cytometry (Hyperion) for phenotyping and spatial interaction analyses of immune cells, and combined single-cell gene expression profiling and T-cell receptor (TCR) sequencing (single-cell RNA sequencing (scRNAseq)) to characterize the transcriptional states of clonally expanded tumor-infiltrating T cells. RESULTS: IR+ patients had an excellent survival during >10 years follow-up. The tumors of IR+ patients expressed higher levels of genes strongly related to interferon gamma signaling, T-cell activation, TCR signaling, and mononuclear cell differentiation, as well as genes involved in several immune signaling pathways, than IR- patients. The top differently overexpressed genes included CXCL12 and LTB, involved in ectopic lymphoid structure development. Moreover, scRNAseq not only revealed that CD4+ T cells were the main producers of LTB but also identified a subset of clonally expanded CD8+ T cells, dominantly present in IR+ tumors, which secreted the T cell and dendritic cell (DC) attracting chemokine CCL4. Indeed, immune cell infiltration in IR+ tumors is stronger, highly coordinated, and has a distinct spatial phenotypical signature characterized by intratumoral microaggregates of CD8+CD103+ and CD4+ T cells with DCs. In contrast, the IR- TIME comprised spatial interactions between lymphocytes and various immunosuppressive myeloid cell populations. The impact of these chemokines on local immunity and clinical outcome was confirmed in an independent The Cancer Genome Atlas OPSCC cohort. CONCLUSION: The production of lymphoid cell attracting and organizing chemokines by tumor-specific T cells in IR+ tumors constitutes a positive feedback loop to sustain the formation of the DC-T-cell microaggregates and identifies patients with excellent survival after standard therapy.


Asunto(s)
Quimiocinas/metabolismo , Monitorización Inmunológica/métodos , Linfocitos T/metabolismo , Microambiente Tumoral/inmunología , Femenino , Humanos , Masculino
14.
Gastroenterology ; 138(4): 1429-40, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19909745

RESUMEN

BACKGROUND & AIMS: Colorectal cancer is a complex disease involving immune defense mechanisms within the tumor. Herein, we used data integration and biomolecular network reconstruction to generate hypotheses about the mechanisms underlying immune responses in colorectal cancer that are relevant to tumor recurrence. METHODS: Mechanistic hypotheses were formulated on the basis of data from 108 patients and tested using different assays (gene expression, phenome mapping, tissue-microarrays, T-cell receptor [TCR] repertoire). RESULTS: This integrative approach revealed that chemoattraction and adhesion play important roles in determining the density of intratumoral immune cells. The presence of specific chemokines (CX3CL1, CXCL10, CXCL9) and adhesion molecules (ICAM1, VCAM1, MADCAM1) correlated with different subsets of immune cells and with high densities of T-cell subpopulations within specific tumor regions. High expression of these molecules correlated with prolonged disease-free survival. Moreover, the expression of certain chemokines associated with particular TCR repertoire and specific TCR use predicted patient survival. CONCLUSIONS: Data integration and biomolecular network reconstruction is a powerful approach to uncover molecular mechanisms. This study shows the utility of this approach for the investigation of malignant tumors and other diseases. In colorectal cancer, the expression of specific chemokines and adhesion molecules were found as being critical for high densities of T-cell subsets within the tumor and associated with particular TCR repertoire. Intratumoral-specific TCR use correlated with the prognosis of the patients.


Asunto(s)
Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/mortalidad , Linfocitos T/fisiología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/fisiología , Quimiocinas/genética , Quimiocinas/fisiología , Neoplasias Colorrectales/genética , Supervivencia sin Enfermedad , Perfilación de la Expresión Génica , Humanos , Fenotipo , Pronóstico , Receptores de Antígenos de Linfocitos T/fisiología , Análisis de Matrices Tisulares
15.
J Immunother Cancer ; 9(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34716208

RESUMEN

BACKGROUND: A profound insight into the immune landscape of vulvar squamous cell carcinoma (VSCC) is lacking. Here, an in-depth interrogation of T cell infiltration, local immune contexture, signaling pathways and checkpoint molecule expression was performed in early-stage and late-stage VSCC. METHODS: The type, location, and infiltration pattern of T cells were studied in 109 patients with primary VSCC FIGO stage I-III. RNA expression of genes involved in immune oncology and oncogenic signaling pathways was analyzed in 40 VSCC, matched for prognostic clinicopathological variables, analyzed for HPV and p53 status, and selected based on T cell infiltration. RESULTS: High intraepithelial infiltration with CD4 or CD8 T cells was associated with longer overall and recurrence-free survival and formed an independent prognostic factor, outperforming molecular subtype and stage of the disease. Strong T cell infiltrated VSCC displayed a coordinated immune response reflected by a positive association between T cells and different lymphocyte and myeloid cell subsets. The expression of genes involved in the migration of T cells and myeloid cells, T cell activation and costimulation, interferon (IFN)-γ signaling, cytotoxicity and apoptosis was higher than in low infiltrated tumors. An active immune signaling profile was observed in all inflamed, part of the altered-excluded and not in altered-immunosuppressed or deserted VSCC. While several checkpoint molecules were overexpressed, only PD-L1 expression displayed discriminatory ability and clinical usefulness. High PD-L1 expression was detected in all inflamed and ~60% of the altered-excluded VSCC. CONCLUSION: An active immune signaling profile is present in 35% of primary FIGO I-III VSCCs, suggesting potential responsiveness to neoadjuvant PD-1/PD-L1 immunotherapy.


Asunto(s)
Antígeno B7-H1/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Inmunoterapia/métodos , Linfocitos T/metabolismo , Neoplasias de la Vulva/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Antígeno B7-H1/farmacología , Carcinoma de Células Escamosas/genética , Femenino , Humanos , Persona de Mediana Edad , Neoplasias de la Vulva/genética
16.
BMC Genomics ; 11 Suppl 1: S7, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20158878

RESUMEN

Cancer progression is a complex process involving host-tumor interactions by multiple molecular and cellular factors of the tumor microenvironment. Tumor cells that challenge immune activity may be vulnerable to immune destruction. To address this question we have directed major efforts towards data integration and developed and installed a database for cancer immunology with more than 1700 patients and associated clinical data and biomolecular data. Mining of the database revealed novel insights into the molecular mechanisms of tumor-immune cell interaction. In this paper we present the computational tools used to analyze integrated clinical and biomolecular data. Specifically, we describe a database for heterogeneous data types, the interfacing bioinformatics and statistical tools including clustering methods, survival analysis, as well as visualization methods. Additionally, we discuss generic issues relevant to the integration of clinical and biomolecular data, as well as recent developments in integrative data analyses including biomolecular network reconstruction and mathematical modeling.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Factuales , Neoplasias/inmunología , Biometría , Humanos , Diseño de Software , Tasa de Supervivencia
17.
Bioinformatics ; 25(8): 1091-3, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19237447

RESUMEN

We have developed ClueGO, an easy to use Cytoscape plug-in that strongly improves biological interpretation of large lists of genes. ClueGO integrates Gene Ontology (GO) terms as well as KEGG/BioCarta pathways and creates a functionally organized GO/pathway term network. It can analyze one or compare two lists of genes and comprehensively visualizes functionally grouped terms. A one-click update option allows ClueGO to automatically download the most recent GO/KEGG release at any time. ClueGO provides an intuitive representation of the analysis results and can be optionally used in conjunction with the GOlorize plug-in.


Asunto(s)
Biología Computacional/métodos , Redes Reguladoras de Genes , Programas Informáticos , Bases de Datos Genéticas , Modelos Biológicos , Familia de Multigenes
18.
Nat Commun ; 11(1): 1487, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198407

RESUMEN

Rewiring of energy metabolism and adaptation of mitochondria are considered to impact on prostate cancer development and progression. Here, we report on mitochondrial respiration, DNA mutations and gene expression in paired benign/malignant human prostate tissue samples. Results reveal reduced respiratory capacities with NADH-pathway substrates glutamate and malate in malignant tissue and a significant metabolic shift towards higher succinate oxidation, particularly in high-grade tumors. The load of potentially deleterious mitochondrial-DNA mutations is higher in tumors and associated with unfavorable risk factors. High levels of potentially deleterious mutations in mitochondrial Complex I-encoding genes are associated with a 70% reduction in NADH-pathway capacity and compensation by increased succinate-pathway capacity. Structural analyses of these mutations reveal amino acid alterations leading to potentially deleterious effects on Complex I, supporting a causal relationship. A metagene signature extracted from the transcriptome of tumor samples exhibiting a severe mitochondrial phenotype enables identification of tumors with shorter survival times.


Asunto(s)
ADN Mitocondrial/genética , Mutación , Fosforilación Oxidativa , Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Ácido Succínico/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Metabolismo Energético , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Malatos , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Oxidación-Reducción , Próstata/patología , Neoplasias de la Próstata/patología , Transcriptoma
19.
Artículo en Inglés | MEDLINE | ID: mdl-32923902

RESUMEN

PURPOSE: Conversion of tumor subtype frequently occurs in the course of metastatic breast cancer but is a poorly understood phenomenon. This study aims to compare molecular subtypes with subsequent lung or pleural metastasis. PATIENTS AND METHODS: In a cohort of 57 patients with breast cancer and lung or pleural metastasis (BCLPM), we investigated paired primary and metastatic tissues for differential gene expression of 269 breast cancer genes. The PAM50 classifier was applied to identify intrinsic subtypes, and differential gene expression and cluster analysis were used to further characterize subtypes and tumors with subtype conversion. RESULTS: In primary breast cancer, the most frequent molecular subtype was luminal A (lumA; 49.1%); it was luminal B (lumB) in BCLPM (38.6%). Subtype conversion occurred predominantly in lumA breast cancers compared with other molecular subtypes (57.1% v 27.6%). In lumA cancers, 62 genes were identified with differential expression in metastatic versus primary disease, compared with only 10 differentially expressed genes in lumB, human epidermal growth factor receptor 2 (HER2)-enriched, and basal subtypes combined. Gene expression changes in lumA cancers affected not only the repression of the estrogen receptor pathway and cell cycle-related genes but also the WNT pathway, proteinases (MME, MMP11), and motility-associated cytoskeletal proteins (CK5, CK14, CK17). Subtype-switched lumA cancers were further characterized by cell proliferation and cell cycle checkpoint gene upregulation and dysregulation of the p53 pathway. This involved 83 notable gene expression changes. CONCLUSION: Our results indicate that gene expression changes and subsequent subtype conversion occur on a large scale in metastatic luminal A-type breast cancer compared with other molecular subtypes. This underlines the significance of molecular changes in metastatic disease, especially in tumors of initially low aggressive potential.

20.
Commun Biol ; 3(1): 252, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444775

RESUMEN

Tumors have evolved mechanisms to escape anti-tumor immunosurveillance. They limit humoral and cellular immune activities in the stroma and render tumors resistant to immunotherapy. Sensitizing tumor cells to immune attack is an important strategy to revert immunosuppression. However, the underlying mechanisms of immune escape are still poorly understood. Here we discover Indoleamine-2,3-dioxygenase-1 (IDO1)+ Paneth cells in the stem cell niche of intestinal crypts and tumors, which promoted immune escape of colorectal cancer (CRC). Ido1 expression in Paneth cells was strictly Stat1 dependent. Loss of IDO1+ Paneth cells in murine intestinal adenomas with tumor cell-specific Stat1 deletion had profound effects on the intratumoral immune cell composition. Patient samples and TCGA expression data suggested corresponding cells in human colorectal tumors. Thus, our data uncovered an immune escape mechanism of CRC and identify IDO1+ Paneth cells as a target for immunotherapy.


Asunto(s)
Neoplasias Colorrectales/patología , Tolerancia Inmunológica/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Neoplasias Intestinales/patología , Células de Paneth/inmunología , Factor de Transcripción STAT1/fisiología , Animales , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Neoplasias Intestinales/inmunología , Neoplasias Intestinales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA