Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Chem Biol ; 16(2): 113-121, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31974527

RESUMEN

Microbial chemical production is a rapidly growing industry, with much of the growth fueled by advances in synthetic biology. New approaches have enabled rapid strain engineering for the production of various compounds; however, translation to industry is often problematic because native phenotypes of model hosts prevent the design of new low-cost bioprocesses. Here, we argue for a new approach that leverages the native stress-tolerant phenotypes of non-conventional microbes that directly address design challenges from the outset. Growth at high temperature, high salt and solvent concentrations, and low pH can enable cost savings by reducing the energy required for product separation, bioreactor cooling, and maintaining sterile conditions. These phenotypes have the added benefit of allowing for the use of low-cost sugar and water resources. Non-conventional hosts are needed because these phenotypes are polygenic and thus far have proven difficult to recapitulate in the common hosts Escherichia coli and Saccharomyces cerevisiae.


Asunto(s)
Bacterias/metabolismo , Hongos/metabolismo , Microbiología Industrial/métodos , Bacterias/genética , Hongos/genética , Ingeniería Genética , Concentración de Iones de Hidrógeno , Microbiología Industrial/economía , Ingeniería Metabólica , Microorganismos Modificados Genéticamente/fisiología , Presión Osmótica , Fenotipo , Solventes , Estrés Fisiológico
2.
Nature ; 536(7615): 224-8, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27487213

RESUMEN

Ribosome-associated factors must properly decode the limited information available in nascent polypeptides to direct them to their correct cellular fate. It is unclear how the low complexity information exposed by the nascent chain suffices for accurate recognition by the many factors competing for the limited surface near the ribosomal exit site. Questions remain even for the well-studied cotranslational targeting cycle to the endoplasmic reticulum, involving recognition of linear hydrophobic signal sequences or transmembrane domains by the signal recognition particle (SRP). Notably, the SRP has low abundance relative to the large number of ribosome-nascent-chain complexes (RNCs), yet it accurately selects those destined for the endoplasmic reticulum. Despite their overlapping specificities, the SRP and the cotranslationally acting Hsp70 display precise mutually exclusive selectivity in vivo for their cognate RNCs. To understand cotranslational nascent chain recognition in vivo, here we investigate the cotranslational membrane-targeting cycle using ribosome profiling in yeast cells coupled with biochemical fractionation of ribosome populations. We show that the SRP preferentially binds secretory RNCs before their targeting signals are translated. Non-coding mRNA elements can promote this signal-independent pre-recruitment of SRP. Our study defines the complex kinetic interaction between elongation in the cytosol and determinants in the polypeptide and mRNA that modulate SRP­substrate selection and membrane targeting.


Asunto(s)
Membranas Intracelulares/metabolismo , Biosíntesis de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Péptidos/metabolismo , Señales de Clasificación de Proteína/fisiología , Transporte de Proteínas , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
3.
Biotechnol Bioeng ; 118(8): 3200-3214, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34050940

RESUMEN

In plants, polygalacturonase-inhibiting proteins (PGIPs) play critical roles for resistance to fungal disease by inhibiting the pectin-depolymerizing activity of endopolygalacturonases (PGs), one type of enzyme secreted by pathogens that compromises plant cell walls and leaves the plant susceptible to disease. Here, the interactions between PGIPs from Phaseolus vulgaris (PvPGIP1 and PvPGIP2) and PGs from Aspergillus niger (AnPG2), Botrytis cinerea (BcPG1 and BcPG2), and Fusarium moniliforme (FmPG3) were reconstituted through a yeast two hybrid (Y2H) system to investigate the inhibition efficiency of various PvPGIP1 and 2 truncations and mutants. We found that tPvPGIP2_5-8, which contains LRR5 to LRR8 and is only one-third the size of the full length peptide, exhibits the same level of interactions with AnPG and BcPGs as the full length PvPGIP2 via Y2H. The inhibitory activities of tPvPGIP2_5-8 on the growth of A. niger and B. cinerea were then examined and confirmed on pectin agar. On pectin assays, application of both full length PvPGIP2 and tPvPGIP2_5-8 clearly slows down the growth of A. niger and B. cinerea. Investigation on the sequence-function relationships of PGIP utilizing a combination of site directed mutagenesis and a variety of peptide truncations suggests that LRR5 could have the most essential structural feature for the inhibitory activities, and may be a possible target for the future engineering of PGIP with enhanced activity. This study highlights the potential of plant-derived PGIPs as a candidate for future in planta evaluation as a pest control agent.


Asunto(s)
Aspergillus niger/enzimología , Proteínas Fúngicas , Fusarium/enzimología , Control Biológico de Vectores , Phaseolus/química , Proteínas de Plantas/química , Poligalacturonasa , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Phaseolus/genética , Proteínas de Plantas/genética , Poligalacturonasa/antagonistas & inhibidores , Poligalacturonasa/química , Poligalacturonasa/genética
4.
Microb Cell Fact ; 20(1): 19, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33472617

RESUMEN

BACKGROUND: Eukaryotes use distinct networks of biogenesis factors to synthesize, fold, monitor, traffic, and secrete proteins. During heterologous expression, saturation of any of these networks may bottleneck titer and yield. To understand the flux through various routes into the early secretory pathway, we quantified the global and membrane-associated translatomes of Komagataella phaffii. RESULTS: By coupling Ribo-seq with long-read mRNA sequencing, we generated a new annotation of protein-encoding genes. By using Ribo-seq with subcellular fractionation, we quantified demands on co- and posttranslational translocation pathways. During exponential growth in rich media, protein components of the cell-wall represent the greatest number of nascent chains entering the ER. Transcripts encoding the transmembrane protein PMA1 sequester more ribosomes at the ER membrane than any others. Comparison to Saccharomyces cerevisiae reveals conservation in the resources allocated by gene ontology, but variation in the diversity of gene products entering the secretory pathway. CONCLUSION: A subset of host proteins, particularly cell-wall components, impose the greatest biosynthetic demands in the early secretory pathway. These proteins are potential targets in strain engineering aimed at alleviating bottlenecks during heterologous protein production.


Asunto(s)
Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Biosíntesis de Proteínas/genética , Saccharomycetales/genética , Vías Secretoras/genética , Pared Celular/genética , Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Modelos Genéticos , Sistemas de Lectura Abierta/genética , Procesamiento Proteico-Postraduccional , RNA-Seq/métodos , Ribosomas/genética , Ribosomas/metabolismo , Saccharomycetales/metabolismo
5.
J Biol Chem ; 290(50): 30006-17, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26451041

RESUMEN

Tail-anchored (TA) proteins, defined as having a single transmembrane helix at their C terminus, are post-translationally targeted to the endoplasmic reticulum membrane by the guided entry of TA proteins (GET) pathway. In yeast, the handover of TA substrates is mediated by the heterotetrameric Get4/Get5 complex (Get4/5), which tethers the co-chaperone Sgt2 to the targeting factor, the Get3 ATPase. Binding of Get4/5 to Get3 is critical for efficient TA targeting; however, questions remain about the formation of the Get3·Get4/5 complex. Here we report crystal structures of a Get3·Get4/5 complex from Saccharomyces cerevisiae at 2.8 and 6.0 Å that reveal a novel interface between Get3 and Get4 dominated by electrostatic interactions. Kinetic and mutational analyses strongly suggest that these structures represent an on-pathway intermediate that rapidly assembles and then rearranges to the final Get3·Get4/5 complex. Furthermore, we provide evidence that the Get3·Get4/5 complex is dominated by a single Get4/5 heterotetramer bound to one monomer of a Get3 dimer, uncovering an intriguing asymmetry in the Get4/5 heterotetramer upon Get3 binding. Ultrafast diffusion-limited electrostatically driven Get3·Get4/5 association enables Get4/5 to rapidly sample and capture Get3 at different stages of the GET pathway.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido , Electricidad Estática , Especificidad por Sustrato
6.
J Biol Chem ; 287(11): 8310-7, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22262836

RESUMEN

Tail-anchored trans-membrane proteins are targeted to membranes post-translationally. The proteins Get4 and Get5 form an obligate complex that catalyzes the transfer of tail-anchored proteins destined to the endoplasmic reticulum from Sgt2 to the cytosolic targeting factor Get3. Get5 forms a homodimer mediated by its carboxyl domain. We show here that a conserved motif exists within the carboxyl domain. A high resolution crystal structure and solution NMR structures of this motif reveal a novel and stable helical dimerization domain. We additionally determined a solution NMR structure of a divergent fungal homolog, and comparison of these structures allows annotation of specific stabilizing interactions. Using solution x-ray scattering and the structures of all folded domains, we present a model of the full-length Get4/Get5 complex.


Asunto(s)
Proteínas Portadoras/química , Modelos Moleculares , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Ubiquitina/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Aspergillus fumigatus/química , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Proteínas de la Membrana , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
7.
Proc Natl Acad Sci U S A ; 107(27): 12127-32, 2010 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-20554915

RESUMEN

The recently elucidated Get proteins are responsible for the targeted delivery of the majority of tail-anchored (TA) proteins to the endoplasmic reticulum. Get4 and Get5 have been identified in the early steps of the pathway mediating TA substrate delivery to the cytoplasmic targeting factor Get3. Here we report a crystal structure of Get4 and an N-terminal fragment of Get5 from Saccharomyces cerevisae. We show Get4 and Get5 (Get4/5) form an intimate complex that exists as a dimer (two copies of Get4/5) mediated by the C-terminus of Get5. We further demonstrate that Get3 specifically binds to a conserved surface on Get4 in a nucleotide dependent manner. This work provides further evidence for a model in which Get4/5 operates upstream of Get3 and mediates the specific delivery of a TA substrate.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Portadoras/química , Factores de Intercambio de Guanina Nucleótido/química , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Prueba de Complementación Genética , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de la Membrana , Modelos Moleculares , Mutación , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Ubiquitina/genética , Ubiquitina/metabolismo
8.
J Biol Chem ; 286(39): 34325-34, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21832041

RESUMEN

The insertion of tail-anchored transmembrane (TA) proteins into the appropriate membrane is a post-translational event that requires stabilization of the transmembrane domain and targeting to the proper destination. Sgt2 is a heat-shock protein cognate (HSC) co-chaperone that preferentially binds endoplasmic reticulum-destined TA proteins and directs them to the GET pathway via Get4 and Get5. Here, we present the crystal structure from a fungal Sgt2 homolog of the tetratrico-repeat (TPR) domain and part of the linker that connects to the C-terminal domain. The linker extends into the two-carboxylate clamp of the TPR domain from a symmetry-related molecule mimicking the binding to HSCs. Based on this structure, we provide biochemical evidence that the Sgt2 TPR domain has the ability to directly bind multiple HSC family members. The structure allows us to propose features involved in this lower specificity relative to other TPR containing co-chaperones. We further show that a dimer of Sgt2 binds a single Get5 and use small angle x-ray scattering to characterize the domain arrangement of Sgt2 in solution. These results allow us to present a structural model of the Sgt2-Get4/Get5-HSC complex.


Asunto(s)
Proteínas Portadoras/química , Proteínas de Choque Térmico/química , Modelos Moleculares , Complejos Multiproteicos/química , Multimerización de Proteína/fisiología , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Ubiquitina/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de la Membrana , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
9.
Proc Natl Acad Sci U S A ; 106(35): 14849-54, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19706470

RESUMEN

The Get3 ATPase directs the delivery of tail-anchored (TA) proteins to the endoplasmic reticulum (ER). TA-proteins are characterized by having a single transmembrane helix (TM) at their extreme C terminus and include many essential proteins, such as SNAREs, apoptosis factors, and protein translocation components. These proteins cannot follow the SRP-dependent co-translational pathway that typifies most integral membrane proteins; instead, post-translationally, these proteins are recognized and bound by Get3 then delivered to the ER in the ATP dependent Get pathway. To elucidate a molecular mechanism for TA protein binding by Get3 we have determined three crystal structures in apo and ADP forms from Saccharomyces cerevisae (ScGet3-apo) and Aspergillus fumigatus (AfGet3-apo and AfGet3-ADP). Using structural information, we generated mutants to confirm important interfaces and essential residues. These results point to a model of how Get3 couples ATP hydrolysis to the binding and release of TA-proteins.


Asunto(s)
Adenosina Trifosfatasas/química , Aspergillus fumigatus/enzimología , Factores de Intercambio de Guanina Nucleótido/química , Proteínas de la Fusión de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Cristalografía por Rayos X , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de la Fusión de la Membrana/química , Modelos Moleculares , Conformación de Ácido Nucleico , Nucleótidos/química , Nucleótidos/metabolismo , Fenotipo , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología Estructural de Proteína
10.
Sci Rep ; 11(1): 12263, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112900

RESUMEN

The COVID-19 crisis has taken a significant toll on human life and the global economy since its start in early 2020. Healthcare professionals have been particularly vulnerable because of the unprecedented shortage of Facepiece Respirators (FPRs), which act as fundamental tools to protect the medical staff treating the coronavirus patients. In addition, many FPRs are designed to be disposable single-use devices, creating an issue related to the generation of large quantities of non-biodegradable waste. In this contribution, we describe a plasma-based decontamination technique designed to circumvent the shortages of FPRs and alleviate the environmental problems posed by waste generation. The system utilizes a Dielectric Barrier Discharge (DBD) to generate ozone and feed it through the fibers of the FPRs. The flow-through configuration is different than canonical ozone-based sterilization methods, in which the equipment is placed in a sealed ozone-containing enclosure without any flow through the mask polymer fibers. We demonstrate the rapid decontamination of surgical masks using Escherichia coli (E. coli) and Vesicular Stomatitis Virus (VSV) as model pathogens, with the flow-through configuration providing a drastic reduction in sterilization time compared to the canonical approach. We also demonstrate that there is no deterioration in mask structure or filtration efficiency resulting from sterilization. Finally, we show that this decontamination approach can be implemented using readily available tools, such as a plastic box, a glass tube, few 3D printed components, and the high-voltage power supply from a plasma globe toy. The prototype assembled for this study is portable and affordable, with effectiveness comparable to that of larger and more expensive equipment.

12.
Neuron ; 85(1): 76-87, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25533483

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder. Functional interactions between some PD genes, like PINK1 and parkin, have been identified, but whether other ones interact remains elusive. Here we report an unexpected genetic interaction between two PD genes, VPS35 and EIF4G1. We provide evidence that EIF4G1 upregulation causes defects associated with protein misfolding. Expression of a sortilin protein rescues these defects, downstream of VPS35, suggesting a potential role for sortilins in PD. We also show interactions between VPS35, EIF4G1, and α-synuclein, a protein with a key role in PD. We extend our findings from yeast to an animal model and show that these interactions are conserved in neurons and in transgenic mice. Our studies reveal unexpected genetic and functional interactions between two seemingly unrelated PD genes and functionally connect them to α-synuclein pathobiology in yeast, worms, and mouse. Finally, we provide a resource of candidate PD genes for future interrogation.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Factor 4G Eucariótico de Iniciación/genética , Enfermedad de Parkinson/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , alfa-Sinucleína/genética , Proteínas Adaptadoras del Transporte Vesicular , Animales , Caenorhabditis elegans , Ratones , Ratones Transgénicos , Saccharomyces cerevisiae
13.
Nat Struct Mol Biol ; 21(12): 1100-5, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25420103

RESUMEN

The genetic code allows most amino acids a choice of optimal and nonoptimal codons. We report that synonymous codon choice is tuned to promote interaction of nascent polypeptides with the signal recognition particle (SRP), which assists in protein translocation across membranes. Cotranslational recognition by the SRP in vivo is enhanced when mRNAs contain nonoptimal codon clusters 35-40 codons downstream of the SRP-binding site, the distance that spans the ribosomal polypeptide exit tunnel. A local translation slowdown upon ribosomal exit of SRP-binding elements in mRNAs containing these nonoptimal codon clusters is supported experimentally by ribosome profiling analyses in yeast. Modulation of local elongation rates through codon choice appears to kinetically enhance recognition by ribosome-associated factors. We propose that cotranslational regulation of nascent-chain fate may be a general constraint shaping codon usage in the genome.


Asunto(s)
Codón/metabolismo , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Péptidos/metabolismo , Biosíntesis de Proteínas , Partícula de Reconocimiento de Señal/metabolismo , Transporte de Proteínas , Ribosomas/metabolismo
14.
Nat Struct Mol Biol ; 21(5): 437-42, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24727835

RESUMEN

Correct localization of membrane proteins is essential to all cells. Chaperone cascades coordinate the capture and handover of substrate proteins from the ribosomes to the target membranes, yet the mechanistic and structural details of these processes remain unclear. Here we investigate the conserved GET pathway, in which the Get4-Get5 complex mediates the handover of tail-anchor (TA) substrates from the cochaperone Sgt2 to the Get3 ATPase, the central targeting factor. We present a crystal structure of a yeast Get3-Get4-Get5 complex in an ATP-bound state and show how Get4 primes Get3 by promoting the optimal configuration for substrate capture. Structure-guided biochemical analyses demonstrate that Get4-mediated regulation of ATP hydrolysis by Get3 is essential to efficient TA-protein targeting. Analogous regulation of other chaperones or targeting factors could provide a general mechanism for ensuring effective substrate capture during protein biogenesis.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Proteínas Portadoras/química , Factores de Intercambio de Guanina Nucleótido/química , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Cristalografía por Rayos X , Regulación Fúngica de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas de la Membrana , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/genética
15.
Curr Opin Struct Biol ; 22(2): 217-24, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22444563

RESUMEN

Biosynthesis of membrane proteins requires that hydrophobic transmembrane (TM) regions be shielded from the cytoplasm while being directed to the correct membrane. Tail-anchored (TA) membrane proteins, characterized by a single C-terminal TM, pose an additional level of complexity because they must be post-translationally targeted. In eukaryotes, the GET pathway shuttles TA-proteins to the endoplasmic reticulum. The key proteins required in yeast (Sgt2 and Get1-5) have been under extensive structural and biochemical investigation during recent years. The central protein Get3 utilizes nucleotide linked conformational changes to facilitate substrate loading and targeting. Here we analyze this complex process from a structural perspective, as understood in yeast, and further postulate on similar pathways in other domains of life.


Asunto(s)
Retículo Endoplásmico/química , Proteínas de la Membrana/química , Animales , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Unión Proteica , Pliegue de Proteína
16.
Cell Rep ; 2(6): 1620-32, 2012 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-23142665

RESUMEN

In the cytoplasm, the correct delivery of membrane proteins is an essential and highly regulated process. The posttranslational targeting of the important tail-anchor membrane (TA) proteins has recently been under intense investigation. A specialized pathway, called the guided entry of TA proteins (GET) pathway in yeast and the transmembrane domain recognition complex (TRC) pathway in vertebrates, recognizes endoplasmic-reticulum-targeted TA proteins and delivers them through a complex series of handoffs. An early step is the formation of a complex between Sgt2/SGTA, a cochaperone with a presumed ubiquitin-like-binding domain (UBD), and Get5/UBL4A, a ubiquitin-like domain (UBL)-containing protein. We structurally characterize this UBD/UBL interaction for both yeast and human proteins. This characterization is supported by biophysical studies that demonstrate that complex formation is mediated by electrostatics, generating an interface that has high-affinity with rapid kinetics. In total, this work provides a refined model of the interplay of Sgt2 homologs in TA targeting.


Asunto(s)
Proteínas Portadoras/química , Complejos Multiproteicos/química , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Ubiquitina/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Chaperonas Moleculares , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA