Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 18(7): 770, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31118489

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nano Lett ; 19(10): 7210-7216, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31487461

RESUMEN

At cryogenic temperature and at the single emitter level, the optical properties of single-wall carbon nanotubes depart drastically from that of a one-dimensional (1D) object. In fact, the (usually unintentional) localization of excitons in local potential wells leads to nearly 0D behaviors such as photon antibunching, spectral diffusion, inhomogeneous broadening, etc. Here, we present a hyperspectral imaging of this spontaneous exciton localization effect at the single nanotube level using a super-resolved optical microscopy approach. We report on the statistical distribution of the trap localization, depth, and width. We use a quasi-resonant photoluminescence excitation approach to probe the confined quantum states. Numerical simulations of the quantum states and exciton diffusion show that the excitonic states are deeply modified by the interface disorder inducing a remarkable discretization of the excitonic absorption spectrum and a quenching of the free 1D exciton absorption.

3.
Nat Mater ; 17(8): 663-670, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29915427

RESUMEN

Progress in quantum computing and quantum cryptography requires efficient, electrically triggered, single-photon sources at room temperature in the telecom wavelengths. It has been long known that semiconducting single-wall carbon nanotubes (SWCNTs) display strong excitonic binding and emit light over a broad range of wavelengths, but their use has been hampered by a low quantum yield and a high sensitivity to spectral diffusion and blinking. In this Perspective, we discuss recent advances in the mastering of SWCNT optical properties by chemistry, electrical contacting and resonator coupling towards advancing their use as quantum light sources. We describe the latest results in terms of single-photon purity, generation efficiency and indistinguishability. Finally, we consider the main fundamental challenges stemming from the unique properties of SWCNTs and the most promising roads for SWCNT-based chip integrated quantum photonic sources.

4.
Nat Mater ; 17(9): 843, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29995875

RESUMEN

In the version of this Perspective originally published, the x-axis label of Fig. 1d was missing; it should have read 'Wavelength (nm)'. The units of the y axis of Fig. 3b were incorrect; they should have been meV. And the citation of Fig. 3c in the main text was incorrect; it should have been to Fig. 3b. These issues have now been corrected.

5.
Nano Lett ; 17(7): 4184-4188, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28641011

RESUMEN

Condensed-matter emitters offer enriched cavity quantum electrodynamical effects due to the coupling to external degrees of freedom. In the case of carbon nanotubes, a very peculiar coupling between localized excitons and the one-dimensional acoustic phonon modes can be achieved, which gives rise to pronounced phonon wings in the luminescence spectrum. By coupling an individual nanotube to a tunable optical microcavity, we show that this peculiar exciton-phonon coupling is a valuable resource to enlarge the tuning range of the single-photon source while keeping an excellent exciton-photon coupling efficiency and spectral purity. Using the unique flexibility of our scanning fiber cavity, we are able to measure the efficiency spectrum of the very same nanotube in the Purcell regime for several mode volumes. Whereas this efficiency spectrum looks very much like the free-space luminescence spectrum when the Purcell factor is small (large mode volume), we show that the deformation of this spectrum at lower mode volumes can be traced back to the strength of the exciton-photon coupling. It shows an enhanced efficiency on the red wing that arises from the asymmetry of the incoherent energy exchange processes between the exciton and the cavity. This allows us to obtain a tuning range up to several hundred times the spectral width of the source.

6.
Phys Rev Lett ; 116(24): 247402, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27367407

RESUMEN

The narrow emission of a single carbon nanotube at low temperature is coupled to the optical mode of a fiber microcavity using the built-in spatial and spectral matching brought by this flexible geometry. A thorough cw and time-resolved investigation of the very same emitter both in free space and in cavity shows an efficient funneling of the emission into the cavity mode together with a strong emission enhancement corresponding to a Purcell factor of up to 5. At the same time, the emitted photons retain a strong sub-Poissonian statistics. By exploiting the cavity feeding effect on the phonon wings, we locked the emission of the nanotube at the cavity resonance frequency, which allowed us to tune the frequency over a 4 THz band while keeping an almost perfect antibunching. By choosing the nanotube diameter appropriately, this study paves the way to the development of carbon-based tunable single-photon sources in the telecom bands.

7.
Phys Rev Lett ; 117(9): 097402, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27610882

RESUMEN

We report on the ultraviolet optical response of a color center in hexagonal boron nitride. We demonstrate a mapping between the vibronic spectrum of the color center and the phonon dispersion in hexagonal boron nitride, with a striking suppression of the phonon assisted emission signal at the energy of the phonon gap. By means of nonperturbative calculations of the electron-phonon interaction in a strongly anisotropic phonon dispersion, we reach a quantitative interpretation of the acoustic phonon sidebands from cryogenic temperatures up to room temperature. Our analysis provides an original method for estimating the spatial extension of the electronic wave function in a point defect.

8.
Nature ; 457(7226): 174-8, 2009 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19129844

RESUMEN

Semiconductor lasers based on two-dimensional photonic crystals generally rely on an optically pumped central area, surrounded by un-pumped, and therefore absorbing, regions. This ideal configuration is lost when photonic-crystal lasers are electrically pumped, which is practically more attractive as an external laser source is not required. In this case, in order to avoid lateral spreading of the electrical current, the device active area must be physically defined by appropriate semiconductor processing. This creates an abrupt change in the complex dielectric constant at the device boundaries, especially in the case of lasers operating in the far-infrared, where the large emission wavelengths impose device thicknesses of several micrometres. Here we show that such abrupt boundary conditions can dramatically influence the operation of electrically pumped photonic-crystal lasers. By demonstrating a general technique to implement reflecting or absorbing boundaries, we produce evidence that whispering-gallery-like modes or true photonic-crystal states can be alternatively excited. We illustrate the power of this technique by fabricating photonic-crystal terahertz (THz) semiconductor lasers, where the photonic crystal is implemented via the sole patterning of the device top metallization. Single-mode laser action is obtained in the 2.55-2.88 THz range, and the emission far field exhibits a small angular divergence, thus providing a solution for the quasi-total lack of directionality typical of THz semiconductor lasers based on metal-metal waveguides.

9.
Phys Rev Lett ; 113(5): 057402, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25126935

RESUMEN

At low temperature the photoluminescence of single-wall carbon nanotubes show a large variety of spectral profiles ranging from ultranarrow lines in suspended nanotubes to broad and asymmetrical line shapes that puzzle the current interpretation in terms of exciton-phonon coupling. Here, we present a complete set of photoluminescence profiles in matrix embedded nanotubes including unprecedented narrow emission lines. We demonstrate that the diversity of the low-temperature luminescence profiles in nanotubes originates in tiny modifications of their low-energy acoustic phonon modes. When low-energy modes are locally suppressed, a sharp photoluminescence line as narrow as 0.7 meV is restored. Furthermore, multipeak luminescence profiles with specific temperature dependence show the presence of confined phonon modes.

10.
Phys Rev Lett ; 107(6): 063001, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21902319

RESUMEN

We employ heterodyne interferometry to investigate the effect of a single organic molecule on the phase of a propagating laser beam. We report on the first phase-contrast images of individual molecules and demonstrate a single-molecule electro-optical phase switch by applying a voltage to the microelectrodes embedded in the sample. Our results may find applications in single-molecule holography, fast optical coherent signal processing, and single-emitter quantum operations.

11.
Opt Express ; 17(11): 9391-400, 2009 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-19466191

RESUMEN

Surface plasmons are electromagnetic waves originating from electrons and light oscillations at metallic surfaces. Since freely propagating light cannot be coupled directly into surface-plasmon modes, a compact, semiconductor electrical device capable of generating SPs on the device top metallic surface would represent an advantage: not only SP manipulation would become easier, but Au-metalized surfaces can be easily functionalized for applications. Here, we report a demonstration of such a device. The direct proof of surface-plasmon generation is obtained with apertureless near-field scanning optical microscopy, which detects the presence of an intense, evanescent electric field above the device metallic surface upon electrical injection.


Asunto(s)
Electrónica/instrumentación , Láseres de Semiconductores , Resonancia por Plasmón de Superficie/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Opt Express ; 17(12): 9491-502, 2009 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-19506596

RESUMEN

We demonstrate a framework to understand and predict the far-field emission in terahertz frequency photonic-crystal quantum cascade lasers. The devices, which employ a high-performance three-well active region, are lithographically tunable and emit in the 104-120 microm wavelength range. A peak output power of 7 mW in pulsed mode is obtained at 10 K, and the typical device maximum operating temperature is 136 K. We identify the photonic-crystal band-edge states involved in the lasing process as originating from the hexapole and monopole modes at the G point of the photonic band structure, as designed. The theoretical far-field patterns, obtained via finite-difference time-domain simulations, are in excellent agreement with experiment. Polarization measurements further support the theory, and the role of the bonding wires in the emission process is elucidated.


Asunto(s)
Láseres de Semiconductores , Modelos Teóricos , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad , Radiación Terahertz
13.
Nanoscale ; 10(2): 683-689, 2018 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-29242889

RESUMEN

At cryogenic temperatures, the photoluminescence (PL) spectrum of nano-emitters may still be significantly broadened due to interactions with the environment. The interplay of spectral diffusion (SD) and phonon broadening in this context is still a debated issue. Singlewall carbon nanotubes (SWNTs) are a particularly relevant system to address this topic as they show intense spectral diffusion and undergo a high exciton-phonon coupling due to their one-dimensional geometry. Here, we investigate the correlations between the spectral diffusion of the main line and that of the wings in SWNTs quantitatively and demonstrate that the photoluminescence spectrum undergoes spectral jumps as a whole, without distortions. This behavior suggests that the spectral shape of SWNT PL is defined by exciton-phonon interactions and that spectral diffusion results in an additional flat broadening. The methodology developed here can be used to investigate a broad range of non-Lorentzian emitters undergoing spectral diffusion.

14.
Nanoscale ; 8(4): 2326-32, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26750737

RESUMEN

We report on the spontaneous non-covalent functionalization of carbon nanotubes with hydrophobic porphyrin molecules in micellar aqueous solution. By monitoring the species concentrations with optical spectroscopies, we can follow the kinetics of the reaction and study its thermodynamical equilibrium as a function of the reagent concentrations. We show that the reaction is well accounted for by a cooperative Hill equation, reaching a molecular coverage close to a compact monolayer for a porphyrin concentration larger than a diameter-specific threshold concentration. The equilibrium constant is measured for 16 nanotube chiral species. The Gibbs energy of the reaction (of the order of -40 kJ mol(-1)) and its evolution with the nanotube diameter is consistent with theoretical calculations of the binding energy. This thermodynamical study shows a strong preferential binding of TPP molecules to larger diameter nanotubes. This original curvature selectivity can be used to induce diameter selective species enrichment.

15.
Phys Rev Lett ; 100(13): 136806, 2008 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-18517986

RESUMEN

We have realized an electroluminescent device operating in the light-matter strong-coupling regime based on a GaAs/AlGaAs quantum cascade structure embedded in a planar microcavity. At zero bias, reflectivity measurements show a polariton anticrossing between the intersubband transition and the cavity mode. Under electrical injection the spectral features of the emitted light change drastically, as electrons are resonantly injected in a reduced part of the polariton branches. Our experiments demonstrate that electrons can be selectively injected into polariton states up to room temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA