Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Environ Manage ; 193: 567-575, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28242112

RESUMEN

Phosphogypsum (PPG) is the byproduct of the production of phosphoric acid and phosphate fertilizers from phosphate rocks (PR) by acid digestion. Despite the technical feasibility, the impurities present in this waste make its reuse critical and large amounts of PPG are stockpiled, resulting in the production of polluted acid leachates. The aim of the present study was to characterize the spatial variability and evolution in time of a 20-year-old gypstack and to study the geochemical behavior of the waste in order to assess the best management options. Chemical and mineralogical analyses were performed on core samples taken from 4 different depths of the stack down to 13.5 m. Despite the high homogeneity shown by chemical and mineral characterization, leaching tests revealed a different chemical behavior with depth. pH-dependent leaching tests were also performed to measure the acid neutralization capacity of the studied matrices and to determine the leachability of the elements or pollutants of concern as a function of pH. The study was focused on Ca, Fe Na, Si, Cd and Sr and on F-, PO43- and SO42- anions. The geochemical modeling of these tests with PHREEQC enabled the identification of the minor phases controlling the solubilization of the elements analyzed. Validation of the model by the simulation of a column leaching test suggested that the model could be used as a predictive tool to assess different management scenarios.


Asunto(s)
Fertilizantes , Fosfatos , Contaminación Ambiental , Concentración de Iones de Hidrógeno
2.
J Environ Manage ; 183: 175-181, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27591843

RESUMEN

The objective of the present study was to assess the influence of extreme pH and redox potential (Eh) conditions on phosphorus (P) retention within the surface sludge deposit layer of a vertical flow constructed wetland (VFCW) where phosphorus was captured by FeCl3 injection. Series of 27 successive batch leaching tests were conducted under acidic, alkaline or reductive conditions using a representative sludge sample taken from an 8-year old VFCW plant. Experiments were followed by monitoring the pH and Eh variations and analysing the releases of P and other selected elements into the solutions. The sludge material was also analyzed before and after leaching, using solution (31)P NMR spectroscopy and sequential chemical extractions, in order to evaluate dissolutions of both organic and inorganic P-bearing species and their respective contributions to P release. The correlations between the monitored variables were analyzed and visualized through principal components analyses (PCA). Results showed a very good stability of P retention in the sludge deposit and a relatively good acid-buffering capacity of the sludge, revealing that the risk of accidental P release into the environment would be extremely low during the real plant operation.


Asunto(s)
Fósforo/análisis , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Humedales , Cloruros , Compuestos Férricos , Francia , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética
3.
ScientificWorldJournal ; 2014: 537080, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25379538

RESUMEN

Current waste management policies favor biogases (digester gases (DGs) and landfill gases (LFGs)) valorization as it becomes a way for energy politics. However, volatile organic silicon compounds (VOSiCs) contained into DGs/LFGs severely damage combustion engines and endanger the conversion into electricity by power plants, resulting in a high purification level requirement. Assessing treatment efficiency is still difficult. No consensus has been reached to provide a standardized sampling and quantification of VOSiCs into gases because of their diversity, their physicochemical properties, and the omnipresence of silicon in analytical chains. Usually, samplings are done by adsorption or absorption and quantification made by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). In this objective, this paper presents and discusses the optimization of a patented method consisting in VOSiCs sampling by absorption of 100% ethanol and quantification of total Si by ICP-OES.


Asunto(s)
Biocombustibles/análisis , Compuestos de Silicona/análisis , Silicio/análisis , Compuestos Orgánicos Volátiles/análisis , Calibración , Estándares de Referencia , Espectrofotometría Atómica
4.
Water Sci Technol ; 68(4): 813-20, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23985511

RESUMEN

Accelerated degradation tests were performed on polydimethylsiloxane (PDMS) fluids in aqueous solutions and in extreme chemical conditions (pH 2-4 and 9-12). Results confirmed that silicones can be degraded by hydrolysis. Higher degradation levels were achieved in very acidic and alkaline conditions. Degradation products are probably polar siloxanols. In alkaline conditions, the counter-ion was found to have a strong influence on degradation level. Degradation kinetic studies (46 days) were also performed at different pH values. Supposing zeroth-order kinetics, degradation rate constants at 24 °C were estimated to 0.28 mgSi L(-1) day(-1) in NaOH solution (pH 12), 0.07 mgSi L(-1) day(-1) in HCl solution (pH 2) and 0.002 mgSi L(-1) day(-1) in demineralised water (pH 6). From these results, the following hypothesis was drawn: PDMS hydrolysis could occur in wastewater treatment plants and in landfill cells. It may be a first step in the formation of volatile organic silicon compounds (VOSiCs, including siloxanes) in biogas: coupled to biodegradation and (self-) condensation of degradation products, it could finally lead to VOSiCs.


Asunto(s)
Dimetilpolisiloxanos/química , Agua/química , Concentración de Iones de Hidrógeno , Hidrólisis
5.
Sci Total Environ ; 698: 134263, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31505363

RESUMEN

Elevated trace metal concentrations in sediments pose a major problem for the management of stormwater detention basins. These basins provide a nature-based solution to remove particulate pollutants through settling, but the resuspension of these contaminated deposits may impact the quality of both surface and groundwater. A better understanding of trace metal distribution will help to improve basin design and sediment management. This study aims to predict the distribution of trace metal contamination in a stormwater detention basin through (i) investigation of the correlation between metal content in sediments and their settling velocity, and (ii) the coupling of such correlation with a Lagrangian Discrete Phase Model (LDPM). The correlation between Fe, Cr, Cu, Ni, Pb contents and the settling velocity is firstly investigated, based on the sediments collected from 6 sites (inlet and 5 traps at the bottom of a detention basin situated in Chassieu, France) during 5 campaigns in 2017. Results show that Fe is strongly correlated to settling velocity and can be considered as a good indicator of trace metal contents. The derived correlation is then combined with a LDPM for the prediction of trace metal distribution, producing results consistent with in situ measurements. The proposed methodology can be applied for other stormwater basins (dry or wet). As described in this article, the interactions between hydrodynamics and sediment physico-chemical characteristics is crucial for the design and management of stormwater detention basins, allowing managers to target the highest contaminated sediments.

6.
Water Sci Technol ; 58(9): 1775-81, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19029718

RESUMEN

Recently a lot of attention has been focused on volatile organic silicon compounds (VOSiC) present in biogases. They induce costly problems due to silicate formation during biogas combustion in valorisation engine. The cost of converting landfill gas and digester gas into electricity is adversely affected by this undesirable presence. VOSiC in biogases spark off formation of silicate deposits in combustion chambers. They engender abrasion of the inner surfaces leading to serious damage, which causes frequent service interruptions, thus reducing the economic benefit of biogases. It is already known that these VOSiC originate from polydimethylsiloxanes (PDMS) hydrolysis. PDMS (silicones) are used in a wide range of consumer and industrial applications. PDMS are released into the environment through landfills and wastewater treatment plants. There is a lack of knowledge concerning PDMS biodegradation during waste storage. Consequently, understanding PDMS behaviour in landfill cells and in sludge digester is particularly important. In this article, we focused on microbial degradation of PDMS through laboratory experiments. Preliminary test concerning anaerobic biodegradation of various PDMS have been investigated. Results demonstrate that the biotic step has an obvious influence on PDMS biodegradation.


Asunto(s)
Contaminantes Atmosféricos/análisis , Gases/química , Compuestos de Silicona/análisis , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/metabolismo , Anaerobiosis , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Secuencia de Bases , Cartilla de ADN , Compuestos de Silicona/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
7.
Sci Total Environ ; 624: 323-332, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29258033

RESUMEN

Millions of tons of contaminated sediments are dredged each year from the main harbors in France. When removed from water, these sediments are very reactive, therefore their geochemical behavior must be understood in order to avoid dispersion of contaminated lixiviates in the surrounding soils. In this objective, it is necessary to evaluate the principal physicochemical parameters, and also achieve advanced mineralogical characterization. These studied sediments are highly contaminated by metals, notably copper (1445 and 835mg/kg, in the unweathered and naturally-weathered sediments, respectively), lead (760 and 1260mg/kg, respectively), zinc (2085 and 2550mg/kg, respectively), as well as by organic contaminants (PAH, PCB) and organometallics (organotins). A high concentration of sulfide minerals was also observed both in the unweathered sediment preserved under water (3.4wt% of pyrite especially), and in the naturally weathered sediment (2wt% pyrite), and in particular framboïdal pyrite was observed in the two materials. The presence of reactive mineral species in the naturally-weathered sediment can be explained by the deposit of a protective layer, composed of sulfide and their oxidation products (sulfate and iron oxides), thus preventing oxygen from diffusing through to the sulfide minerals. Additionally, the presence of aluminosilicates aggregates coating the sulfide minerals could also explain their presence in the naturally-weathered sediment. As organic matter is one of the principal constituents of the sediments (5.8 and 6.3wt% total organic carbon in the unweathered and weathered sediment, respectively), the aggregates are probably partially constituted of refractory humic material. It therefore appears that the natural weathering has led to a significant decrease in PAHs and organotins, but not in PCBs. The evolution of the granulometric structure and the distribution of the metallic contaminants could therefore lead us to consider a treatment by size separation, and a possible valorization of the dredged sediments in civil engineering.

8.
Water Res ; 40(6): 1240-1248, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16529789

RESUMEN

Laboratory investigations were performed to estimate the potential mobility of arsenic (As) from a highly contaminated gold-mining soil under bio-oxidative aerobic conditions as a potential remediation process. The selected soil was sampled from a gold-mining site in the South of France. It contained 27700 mg kg(-1) total As, with only 0.01% present under water-soluble forms. The nature of the immobilization mechanisms was identified by using complementary physical and chemical techniques. As was found to be strongly associated to iron (oxy)hydroxide solid phase by adsorption and/or co-precipitation. Determination of iron (Fe) and As mobility as a function of pH showed that the release of As was related with the dissolution of Fe (oxy)hydroxide at very low pH values. Bioleaching experiments were conducted with the objective to enhance the mobilization of As from the source material via biological oxidation of elemental sulfur (S degree) into sulfuric acid by autotrophic exogenous or indigenous bacteria naturally located in the soil (i.e. Acidithiobacillus species). Tests conducted at 30 degrees C in shaker flasks supplemented with S degree resulted in very acidic (pH < 1) and oxidative conditions (oxidation/reduction potential (ORP) around +800 mV vs. NHE) and induced the extraction of up to 35% of As over 84 days of incubation. Under the experimental conditions of the study (batch experiments), As mobilization was strongly correlated to the dissolution of Fe solid phases. As mobilization was probably limited by the saturation of the liquid phase. Chimiolithotrophic exogenous population appeared to have a minor effect on As bioleaching. Endogenous populations were shown to rapidly develop their capacity to oxidize S degree and mobilize As from the mining soil in the form of arsenate when elemental S degree was supplemented. The use of microbial population adapted to high As concentrations reduced significantly the lag period to reach optimal pH/ORP conditions, and increased As extraction rate to a maximum of 41% within 70 days of incubation. However, As reprecipitation was subsequently observed, suggesting that the solution should be periodically replaced in order to optimize the process.


Asunto(s)
Arsénico/metabolismo , Minería , Contaminantes del Suelo/metabolismo , Acidithiobacillus/metabolismo , Biodegradación Ambiental , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Microbiología del Suelo
9.
Environ Sci Pollut Res Int ; 23(17): 17142-57, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27215982

RESUMEN

PURPOSE: Dredging of sediments, a requirement for harbor maintenance, removes millions of tons of mineral wastes, contaminated at varying degrees with trace metals, from the water. In previous investigations, Cu and Zn have been identified as highly concentrated trace metals associated to sulfides, mineral phases sensitive to oxidation. In order to ensure their sustainable management, the solidification/stabilization (S/S) and/or the valorization of contaminated sediments as secondary raw materials is a way to be promoted. Indeed, their reuse as a substitute of sand in cemented mortar formulation would allow combining both treatment and valorization of such wastes. METHODS: In the present study, the environmental assessment of mortars formulated with raw and weathered marine sediments (in particular contaminated with Cu, Pb and Zn), compared to sand reference mortars, was conducted through two kinetic leaching tests: weathering cell tests (WCTs), in which mortars were crushed and leached twice a week, and a tank monolith leaching test (MLT), in which leaching was performed on monolithic mortars with increasing leachate renewal time. RESULTS: In both leaching tests, calcium and sulfur were released continuously from sediment mortars, showing the oxidation-neutralization processes of sulfides and carbonates. In the MLT, Cu was released by sediment mortars through diffusion, particularly by weathered mortars, at low concentrations during 60 days of the test duration. With the more aggressive WCT, Cu concentrations were higher at the beginning but became negligible after 7 days of testing. Pb was released through diffusion mechanisms until depletion in both tests, whereas Zn was particularly well immobilized in the cemented matrices. CONCLUSIONS: The S/S process applied using hydraulic binders proved to be efficient in the stabilization of Cu, Pb, and Zn highly presents in studied sediments, and further valorization in civilian engineering applications could be considered.


Asunto(s)
Sedimentos Geológicos/análisis , Oxidación-Reducción , Sulfuros/análisis , Oligoelementos/análisis
10.
Environ Int ; 31(2): 221-6, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15661287

RESUMEN

Batch biochemical leaching tests were carried out to investigate the mobility of arsenic from a contaminated soil collected from a French gold mining site. The specific objective of this research was to examine the effect of indigenous bacterial activity on arsenic mobilization under anaerobic conditions. In a first step, physical and chemical characterizations were performed to provide data concerning the liquid-solid partitioning and mobility of arsenic and other inorganic constituents. In a second step, batch bioleaching tests were conducted in shaker flasks to determine the effect of indigenous bacterial activity under different anaerobic conditions (i.e., addition of mineral nutrients and carbon sources) on arsenic mobilization. Results indicated that arsenic release during contact with deionized water was limited by its very low solubility in the interstitial solution and by the stability of the different arsenic compounds formed with the amorphous solid phases of the soil (mainly iron (oxy)hydroxides). However, an increased mobilization potential was observed over the long term under anaerobic conditions with indigenous bacterial activity enhanced by the addition of carbon sources.


Asunto(s)
Arsénico/metabolismo , Bacterias Anaerobias/fisiología , Contaminantes del Suelo/metabolismo , Disponibilidad Biológica , Microbiología del Suelo
11.
J Hazard Mater ; 122(1-2): 119-28, 2005 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-15943934

RESUMEN

A method for estimating the release of contaminants from contaminated sites under reducing conditions is proposed. The ability of two chemical reducing agents, sodium ascorbate and sodium borohydride, to produce different redox environments in a gold mining soil contaminated with arsenic was investigated. Liquid-solid partitioning experiments were carried out in the presence of each of the reducing agents at different pH conditions. Both the effect of varying concentrations of the reducing agent and the effect of varying pH in the presence of a constant concentration of the reducing agent were studied. Concentrations of sodium ascorbate ranging from 0.0075 to 0.046 mol L(-1) and concentrations of sodium borohydride ranging from 0.0075 to 0.075 mol L(-1) were examined. The addition of varying concentrations of sodium borohydride provided greater reducing conditions (ranging from -500 to +140 mV versus NHE) than that obtained using sodium ascorbate (ranging from -7 to +345 mV versus NHE). The solubilization of arsenic and iron was significantly increased by the addition of sodium ascorbate for all concentrations examined and pH tested, compared to that obtained under oxidizing conditions (as much as three orders of magnitude and four orders of magnitude, respectively, for the addition of 0.046 mol L(-1) of sodium ascorbate). In contrast, the alkaline and highly reduced soil conditions obtained with sodium borohydride lead to a lower effect on arsenic solubilization (as much as one order of magnitude for pH values between ca. 7 and 10 and no effect for pH values between ca. 10 and 12) and no effect on iron solubilization for all concentrations examined and pH tested. At similar ORP-pH conditions the results of extraction for arsenic and iron were different for the two reagents used.


Asunto(s)
Arsénico/aislamiento & purificación , Residuos Peligrosos/prevención & control , Minería , Contaminantes del Suelo/aislamiento & purificación , Ácido Ascórbico/química , Borohidruros/química , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción
12.
Environ Sci Pollut Res Int ; 22(14): 10943-55, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25779112

RESUMEN

Contaminated dredged sediments are often considered hazardous wastes, so they have to be adequately managed to avoid leaching of pollutants. The mobility of inorganic contaminants is a major concern. Metal sulfides (mainly framboïdal pyrite, copper, and zinc sulfides) have been investigated in this study as an important reactive metal-bearing phase sensitive to atmospheric oxygen action. An oxygen consumption test (OC-Test) has been adapted to assess the reactivity of dredged sediments when exposed to atmospheric oxygen. An experimental column set-up has been developed allowing the coupling between leaching and oxygen consumption test to investigate the reactivity of the sediment. This reactivity, which consisted of sulfide oxidation, was found to occur for saturation degree between 60 and 90 % and until the 20th testing week, through significant sulfates releases. These latter were assumed to come from sulfide oxidation in the first step of the test, then probably from gypsum dissolution. Confrontation results of OC-Test and leachate quality shows that Cu was well correlated to sulfates releases, which in turn, leads to Ca and Mg dissolution (buffer effect). Cu, and mostly Zn, was associated to organic matter, phyllosilicates, and other minerals through organo-clay complexes. This research confirmed that the OC-Test, originally developed for mine tailings, could be a useful tool in the dredged sediment field which can allow for intrinsic characterization of reactivity of a material suspected to readily reacting with oxygen and for better understanding of geochemical processes that affect pollutants behavior, conversion, and transfer in the environment.


Asunto(s)
Sedimentos Geológicos/química , Metales/química , Oxígeno/química , Sulfuros/química , Contaminantes Químicos del Agua/química
13.
Environ Sci Pollut Res Int ; 20(1): 66-74, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23086130

RESUMEN

The potential leaching of pollutants present in harbor sediments has to be evaluated in order to choose the best practices for managing them. Little is known about the speciation and mobility of heavy metals in these specific solid materials. The objective of this paper is to determine and model the leachability of copper, lead, and zinc present in harbor sediments in order to obtain essential new data. The mobility of inorganic contaminants in a polluted harbor sediment collected in France was investigated as a function of physicochemical conditions. The investigation relied mainly on the use of leaching tests performed in combination with mineralogical analysis and thermodynamic modeling using PHREEQC. The modeling phase was dedicated to both confirm the hypothesis formulated to explain the experimental results and improve the determination of the main physico-chemical parameters governing mobility. The experimental results and modeling showed that the release of copper, lead, and zinc is very low with deionized water which is due to the stability of the associated solid phases (organic matter, carbonate minerals, and/or iron sulfides) at natural slightly basic conditions. However, increased mobilization is observed under pH values below 6.0 and above 10.0. This methodology helped to consistently obtain the geochemical parameters governing the mobility of the contaminants studied.


Asunto(s)
Cobre/química , Sedimentos Geológicos/química , Plomo/química , Contaminantes Químicos del Agua/química , Zinc/química , Cobre/análisis , Cinética , Plomo/análisis , Modelos Químicos , Medición de Riesgo , Navíos , Contaminantes Químicos del Agua/análisis , Zinc/análisis
14.
Environ Sci Pollut Res Int ; 20(1): 51-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22961487

RESUMEN

The environmental assessment of potential effects of contaminated harbor sediments stabilized with hydraulic binders and the determination of remediation endpoints require the determination of pollutants leaching potentials. Moreover, little information about the speciation and mobility of inorganic contaminants in these specific solid matrices is available in the literature. The objective of this paper is to investigate the relationship between mineralogy and leachability of contaminants (copper, lead, and zinc) present in a French harbor sediment stabilized with quicklime and Portland cement. Batch equilibrium leaching tests at various pH, chemical analysis of leachates, and mineralogical studies (X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, and diffuse reflectance infrared Fourier transform) have been combined in the present investigation. The acid neutralization capacity of the stabilized matrix studied is first controlled by the dissolution of portlandite (pH ~12), followed by the dissolution of C-S-H (pH ~11) and the dissolution of ettringite (pH ~10). Finally, a very high buffering capacity of this stabilized sediment is observed for pH values around 6. This equilibrium is mainly controlled by the dissolution of iron sulfides and carbonate minerals. Consequently, the mobilization of inorganic contaminants as a function of pH remains very low (<0.1 wt%) for pH values above 6 and significantly increases for pH below these values. This research confirms the importance of a combined methodology for the intrinsic characterization of potential mobilization of contaminants in a stabilized sediment and for a better understanding of geochemical processes that affect contaminant fate, transformation, and transport in the subsurface environment.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Sedimentos Geológicos/química , Metales Pesados/química , Contaminantes Químicos del Agua/análisis , Cobre/análisis , Cobre/química , Plomo/análisis , Plomo/química , Metales Pesados/análisis , Navíos , Contaminantes Químicos del Agua/química , Contaminación del Agua/análisis , Contaminación del Agua/prevención & control , Zinc/análisis , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA