Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Phys Chem Chem Phys ; 23(42): 24118-24124, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34730137

RESUMEN

Atomic clusters are unique in many perspectives because of their size and structure features and are continuously being applied for different purposes. To unveil their unconventional properties, in this work, using neutral tetraboron clusters as illustrative examples, we study their exotic behaviors in bonding, aromaticity, and reactivity. We show that both double and triple bonds can be formed, ring current patterns can be totally different, and both electrophilic and nucleophilic reactivities can coexist simultaneously. These features are often in contrast with our conventional chemical wisdom and could enrich the possibility for their potential applications. The methodologies employed in this work can be readily applied to other systems. Our studies should help us better appreciate atomic clusters with many atypical properties and henceforth yield novel applications.

2.
J Comput Chem ; 41(28): 2398-2405, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-32827169

RESUMEN

The effect of substitution in the dodecahedrane (C20 H20 ) cage on bonding in the confined He dimer is analyzed. The HeHe distances inside the halogenated dodecahedrane C20 X20 (X = FBr) cages are found to be less than half of that in the free He dimer. Comparing the equilibrium structure of He2 @C20 H20 with He2 @C20 X20 at ωB97XD/def2-TZVPP level, it is found that the He-He distances are relatively larger in the latter cases indicating the influence of halogen groups on the interaction between the cage and the trapped He pair. The viability of the He2 @C20 X20 complexes is reflected in the presence of a very high activation energy barrier against the thermochemically feasible dissociation process producing free He2 and C20 X20 . Quantum theory of atoms in molecules (QTAIM) approach reveals a partial covalent interaction between He pair.

3.
J Comput Chem ; 41(17): 1645-1653, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32267977

RESUMEN

Density functional theory (DFT) based calculations have been carried out for the endohedral encapsulation of magnesium dimer inside fullerene, that is, Mg2 @C60 . It is observed that the minimum energy structure of the Mg2 @C60 system is C2h symmetry. The MgMg bond distance in the Mg2 @C60 system is much shorter than that in the free Mg2 and Mg2 2+ ion. The formation of the endohedral Mg2 @C60 system is thermochemically spontaneous in nature. The natural bond orbital (NBO) analysis showed the presence of an Mg2 2+ fragment with an MgMg bond inside the C60 cage. The electron density descriptors have identified the covalency in the MgMg bond. A non-nuclear attractor (NNA) is present in the middle of the two Mg-atoms. The bonding interaction between the Mg2 and C60 fragments is ionic in nature and the [Mg2 2+ ] and [C60 2- ] represent the bonding pattern in the Mg2 @C60 system. The designed endohedrally encapsulated system behaves as an electride.

4.
Inorg Chem ; 59(10): 7056-7066, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32343905

RESUMEN

Two azo functionalized Zn(II)-based MOFs, {[Zn(SDB)(3,3'-L)0.5]·xG}n, IITKGP-13A, and {[Zn2(SDB)2(4,4'-L)]·xG}n, IITKGP-13B (IITKGP stands for Indian Institute of Technology Kharagpur), have been constructed through the self-assembly of isomeric N,N'-donor spacers (3,3'-L = 3,3'-azobispyridine and 4,4'-L = 4,4'-azobispyridine) with organic ligand 4,4'-sulfonyldibenzoic acid (SDBH2) and Zn(NO3)2·6H2O (G represents disordered solvent molecules). Single-crystal X-ray diffraction studies reveal the 2D structure with sql topology for both MOFs. However, the subtle change in positions of coordinating N atoms of spacers makes IITKGP-13A noninterpenetrated, while IITKGP-13B bears a 2-fold interpenetrated structure. IITKGP-13A exhibits higher uptake of CO2 over CH4 and N2 with high IAST selectivities for mixed CO2/CH4 (50:50, biogas) and CO2/N2 (15:85, flue gas) gas systems. In contrast, IITKGP-13B takes up very low amount of CO2 gas (0.4 mmol g-1) compared to IITKGP-13A (1.65 mmol g-1) at 295 K. Density functional theory (DFT)-based electronic structure calculations have been performed to explain the origin of the large differences in CO2 uptake capacity between the two MOFs at the atomistic level. The results show that the value of the change in enthalpy (ΔH) at 298 K temperature and 1 bar pressure for the CO2 adsorption is more negative in IITKGP-13A as compared to that in IITKGP-13B, thus indicating that CO2 molecules are more favored to get adsorbed in IITKGP-13A than in IITKGP-13B. The computed values for the Gibbs' free energy change (ΔG) for the CO2 adsorption are positive for both of the MOFs, but a higher value is observed for the IITKGP-13B. The noncovalent types of interactions are the main contribution toward the attractive energies between the host MOF frameworks and guest CO2 molecules, which has been studied with the help of energy decomposition analysis (EDA).

5.
Phys Chem Chem Phys ; 22(47): 27476-27495, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33216081

RESUMEN

Although the toxicity of beryllium compounds causes impediments in experiments involving them, beryllium chemistry has seen a recent upsurge of interest and considerable progress. Computations play a very important complementary role in analyzing the structure, stability and bonding of these compounds. In this perspective article, we highlighted our contribution to beryllium chemistry which is either completely through theoretical results or sometimes supported by experimental findings. It starts with the smallest 2π aromatic system, Be32-, which also exhibits rare bond-stretch isomerism. Furthermore, its reactivity towards different transformations is mentioned. Because of the ability of beryllium to attain a high ionic potential, the beryllium center in an appropriate situation can act as an excellent Lewis acid which is utilized to bind noble gas (Ng) atoms, carbon monoxide and dinitrogen through donor-acceptor types of interactions. We made several efforts to have strong Ng-Be bonds which led us to NgBeNCN that is recorded to have the strongest Ng-Be bond among the neutral Ng-Be complexes reported so far. Significant dinitrogen activation was also achieved in (NN)2Be(η2-N2) and OCBeNN complexes. In the latter case, a complete cleavage of the N-N bond producing the most stable NBeNCO molecule has occurred. We also found viable M2(NHBMe)2 (M = Be, Mg) complexes having unusual bonding where the interacting fragments are best described as the neutral M2 and (NHBMe)2 but M2 still possesses a single bond. We finally discussed the complex comprising an unusual Be(i) oxidation state, [BeI(cAACAr)2]+˙ and di-ortho-beryllated carbodiphosphorane exhibiting Be⇇C double dative bonds.

6.
Photochem Photobiol Sci ; 18(6): 1359-1372, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-30916109

RESUMEN

Literature reports provide ample evidence of the dynamical studies of various fluorophores in different room-temperature ionic liquid (RTIL)-cosolvent mixtures. However, most of the experimental and simulation studies reveal that ∼50% of the spectral relaxation dynamics is fast and cannot be resolved using traditional time correlated single photon counting (TCSPC) measurements. Our group has also investigated the dynamics of a solvatochromic probe coumarin 153 (C153) in a RTIL-cosolvent mixture using a TCSPC setup (S. Sarkar, R. Pramanik, C. Ghatak, P. Setua and N. Sarkar, J. Phys. Chem. B, 2010, 114, 2779-2789). Consequently, a major portion of the solvation dynamics remained undetected and moreover we could not monitor the dynamics beyond 0.4 mole fraction of the cosolvents. Thus in this study, we have rekindled our interest to sufficiently capture the rotational anisotropy and solvation dynamics of C153 beyond 0.4 mole fraction of the cosolvents in the RTIL-cosolvent mixture employing femtosecond fluorescence upconversion measurements. Additionally, we have utilized another RTIL with a higher alkyl chain length and viscosity to obtain a comprehensive and quantitative picture of the role of viscosity on the dynamics of the probe molecule. The most interesting observation of the present work is that the viscosities of different RTIL-cosolvent mixtures can efficiently control the cis-trans isomerization kinetics of the anionic fluorophore merocyanine 540 (MC 540) and the translational diffusion of a hydrophobic probe. The optimization of geometrical structures of [EmimOs]- and [EmimOs]-cosolvent mixtures followed by frequency analyses in both gas and solution phases have been carried out using quantum chemical calculations with the aid of density functional theory (DFT) methods. The computation based on the bond distances, electron densities and non-covalent interactions (NCI) has also been used to investigate the existence of the hydrogen-bond (H-bond). Again to comprehend van der Waals interactions and the conventional hydrogen-bond, the evolution of NCI plots are simulated. Therefore, the detailed experimental and theoretical studies presented in this manuscript lead to the inference that addition of the conventional solvents finely tunes the physicochemical properties of RTILs and broadens their scope of applications in the fields of chemistry and biology.

7.
Phys Chem Chem Phys ; 21(38): 21267-21277, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31539015

RESUMEN

The role of boron-ligand cooperation in activating molecular hydrogen by a set of six frustrated Lewis pair (FLP) systems is explored using density functional theory. The results obtained from thermochemical calculations show that all the studied FLP systems are capable of activating molecular hydrogen as the activation free energies are not too high (17.6-25.6 kcal mol-1). Sulphur based FLP 6 is the most promising one as it results in the smallest activation barrier among the studied sets. For a given FLP, the introduction of an electron donating -NMe2 group at the para position of the pyridine ring somewhat lowers the barrier and enhances the B-X (X = O, N, S) interaction. The B-X bond present within the FLPs plays a crucial role in facilitating the H2 activation process where it gets changed from the B+-X- type of interaction in the FLP to the B ← X dative bond upon H2 activation as understood from the energy decomposition analysis in combination with the natural orbital for chemical valence theory (EDA-NOCV). This mode of operation is termed as boron-ligand cooperation in analogy with the metal-ligand cooperation in transition metal complexes. The EDA-NOCV results obtained at the TS also support an electron transfer model where simultaneous electron transfer takes place from the Lewis basic center (N) of the FLP to σ*(H2) and from σ(H2) to the Lewis acidic center (B) of the FLP, resulting in a weakened H-H bond. The change in the aromaticity of the pyridine rings during the course of H2 activation is also monitored by nucleus independent chemical shift calculations. Finally, the ability of the studied FLP systems to act as hydrogenation catalysts is elucidated by studying the hydrogenation of CO2 to yield formic acid.

8.
J Phys Chem A ; 123(50): 10764-10771, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31774284

RESUMEN

SinC3-n (n ≤ 3) clusters are interstellar species that are transient in nature at ambient conditions. Herein, the structure, stability, and nature of bonding in cyclic alkyl(amino) carbene (cAAC) protected SinC3-n (n ≤ 3) clusters are studied in silico. The Si3(cAAC)3 complex was previously reported to be synthesized in large scale. The present results indicate that because the C-CcAAC bond is stronger than the Si-CcAAC bond, C3(cAAC)3 and SiC2(cAAC)3 complexes have significantly larger stability with respect to ligand dissociation than the Si3(cAAC)3 complex, while Si2C(cAAC)3 has almost the same stability as in the latter complex. Moreover, considering the Si3(cAAC)3 complex as a precursor, the hypothetical successive single Si substitution process by a single C atom in Si3(cAAC)3 complex is exergonic in nature. The bonding situation is analyzed by employing natural bond orbital (NBO), electron density, and energy decomposition analyses in combination with the natural orbital for chemical valence theory. These studies show that the nature of bonding in C-CcAAC and Si-CcAAC bonds differs significantly from each other. The former bonds are best described as an electron-shared double bond, whereas the latter bonds are of donor-acceptor type consisting of two components, Si←CcAAC σ-donation and Si→CcAAC π-back-donation. Nevertheless, in the former bonds, covalent character is larger than the ionic one but in the latter bonds the reverse is true. For some Si-CcAAC bonds, the π-natural orbital cannot be located by the NBO method, presumably because of slightly lower occupancy than the cutoff values, but the electron density analysis confirms that different Si-CcAAC bonds in a given complex are almost equivalent in terms of electron density distribution. This paper reports an interesting change in bonding pattern when one replaces Si by a C atom in triatomic silicon carbide clusters stabilized by a ligand.

9.
J Phys Chem A ; 123(31): 6751-6760, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31305075

RESUMEN

The oxidation state, also called oxidation number, of atoms in molecules is a fundamental chemical concept. It is defined as the charge of an atom in a molecule after the ionic approximation of its heteronuclear bonds is applied. Even though for simple molecules the assignment of oxidation states is straightforward, redundancy and ambiguity do exist for others. In this work, we present a density-based framework to determine the oxidation state using the quantities from the information-theoretic approach. As a proof of concept, we examined six elements for a total of 49 molecules. Strong linear correlations were obtained with Shannon entropy, Ghosh-Berkowitz-Parr entropy, information gain, relative Rényi entropy of orders 2 and 3, and Hirshfeld charge. We also discovered that the crystal radius of elements plays the key role in rationalizing the system dependent nature of these strong linear correlations. The validity and effectiveness of our results were demonstrated by the examples of molecules containing elements with two or more oxidation states. Our results should be applicable to more complicated systems in assigning different oxidation states.

10.
Angew Chem Int Ed Engl ; 58(25): 8372-8377, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-30943318

RESUMEN

Is it possible to facilitate the formation of a genuine Be-Be or Mg-Mg single bond for the E2 species while it is in its neutral state? So far, (NHCR )Be-Be(NHCR ) (R=H, Me, Ph) have been reported where Be2 is in 1 Δg excited state imposing a formal Be-Be bond order of two. Herein, we present the formation of a single E-E (E=Be, Mg) covalent bond in E2 (NHBMe )2 (E=Be, Mg; NHBMe =(HCNMe )2 B) complexes where E2 is in 3 ∑u + excited state having (nσg + )2 (nσu + )1 ((n+1)σg + )1 (n=2 for Be and n=4 for Mg) valence electron configuration and it forms electron-shared bonding with two NHBMe radicals. The effects of bonding with nσu + and (n+1)σg + orbitals will cancel each other, providing the former E-E bond order as one. Be2 (NHBMe )2 complex is thermochemically stable with respect to possible dissociation channels at room temperature, whereas the two exergonic channels, Mg2 (NHBMe )2 → Mg + Mg(NHBMe )2 and Mg2 (NHBMe )2 → Mg2 + (NHBMe )2 , are kinetically inhibited by a free energy barrier of 15.7 and 18.7 kcal mol-1 , respectively, which would likely to be further enhanced in cases of bulkier substituents attached to the NHB ligands. Therefore, the title complexes are first viable systems which feature a neutral E2 moiety with a single E-E covalent bond.

11.
Chemistry ; 24(12): 2879-2887, 2018 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-29194873

RESUMEN

Although the noble gas (Ng) compounds with either Ng-C or Ng-N bonds have been reported in the literature, compounds containing both bonds are not known. The first set of systems having a C-Ng-N bonding unit is predicted herein through the analysis of stability and bonding in the NCNgNSi (Ng=Kr-Rn) family. While the Xe and Rn inserted analogues are thermochemically stable with respect to all dissociation channels, but for the one producing CNSiN and free Ng, NCKrNSi has another additional three-body dissociation channel, NCKrNSi→CN+Kr+NSi, which is exergonic by -9.8 kcal mol-1 at 298 K. This latter dissociation can be hindered by lowering the temperature. Moreover, the NCNgNSi→Ng+CNSiN dissociation is also kinetically prohibited by a quite high free energy barrier ranging from 25.2 to 39.3 kcal mol-1 , with a gradual increase in going from Kr to Rn. Therefore, these compounds are appropriate candidates for experimental realization. A detailed bonding analysis by employing natural bond orbital, electron density, energy decomposition, and adaptive natural density partitioning analyses indicates that both Ng-N and C-Ng bonds in the title compounds are covalent in nature. In fact, the latter analysis indicates the presence of delocalized 3c-3e σ-bond within the C-Ng-N moiety and a totally delocalized 5c-2e σ-bond in these compounds. This is an unprecedented bonding characteristic in the sense that the bonding pattern in Ng inserted compounds is generally represented as the presence of covalent bond in one side of Ng, and the ionic interaction in the other side. Further, the dissociation of Ng from NCNgNSi facilitates the formation of a higher energy isomer of NCNSi, CNSiN, which cannot be formed from bare NCNSi as such, because of the very high free energy barrier associated with the isomeric transformation. Therefore, in the presence of Ng atoms it might be possible to detect the high energy isomer.

12.
Chemistry ; 24(14): 3590-3598, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29226483

RESUMEN

The viability of noble gas axled boron nanowheels Ngn M©B10- (Ng=Ar-Rn; M=Nb, Ta; n=1, 2) is explored by ab initio computations. In the resulting Ng2 -M complexes, the Ng-M-Ng nanorod passes through the center of the B10- ring, providing them with an inverse sandwich-like structure. While in the singly Ng bound analogue, the Ng binding enthalpy Hb at 298 K ranges from 2.5 to 10.6 kcal mol-1 , in doubly Ng bound cases it becomes very low for the Ng2 M©B10- →Ng+NgM©B10- dissociation channel, except for the case of Rn, for which the corresponding Hb values are 3.4 (Nb) and 4.0 kcal mol-1 (Ta). For a given Ng, Ta has slightly higher Ng-binding ability than Nb. The corresponding free-energy changes indicate that these systems, particularly the Xe and Rn complexes, are good candidates for experimental realization in a low-temperature matrix. The Ng-M bonds were found to be covalent in nature, as reflected in their large Wiberg bond indices, formation of a 2c-2e σ orbital between Ng and M centers in natural bond orbital and adaptive natural density partitioning (AdNDP) analyses, and the short Ng-M distances. Energy decomposition analysis and a study on the natural orbitals for chemical valence show that the Ng-M contact is supported mainly by the orbital and electrostatic interactions, with almost equal contributions. Although both the Ng→M σ donation and Ng←M π backdonation play roles in the origin of orbital interaction, the former is significantly dominant over the latter. Further, AdNDP analysis indicates that the doubly aromatic character (both σ and π) in MB10- clusters is not perturbed by the interaction with Ng atoms.

13.
Phys Chem Chem Phys ; 20(27): 18491-18502, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29947384

RESUMEN

The internal isomerization, MNC ↔ MCN (M = Cu, Ag, Au), is investigated through quantum chemical computations. CuNC and AgNC are shown to be neither thermochemically nor kinetically stable against transformation to MCN. The free energy barrier (ΔG‡) for AuNC is somewhat considerable (7.1 kcal mol-1), indicating its viability, particularly at low temperature. Further, the Ng inserted analogues, MNgCN (M = Cu, Ag, Au; Ng = Xe, Rn) turn out to be thermochemically stable with respect to all possible dissociation channels but for two two-body dissociation channels, viz., MNgCN → Ng + MCN and MNgCN → Ng + MNC, which are connected to the internal isomerization processes, MNgCN → NgMCN and MNgCN → NgMNC, respectively. However, they are kinetically protected by substantial ΔG‡ values (11.8-15.4 kcal mol-1 for Cu, 9.8-13.6 kcal mol-1 for Ag, and 19.7-24.7 kcal mol-1 for Au). The pathways for such internal conversion are explored in detail. A thorough inspection of the bonding situation of the studied molecules, employing natural bond order, electron density, adaptive natural density partitioning, and energy decomposition analyses indicates that the M-Ng bonds in MNgCN and Ng-C bonds in AuNgCN can be represented as an electron-shared covalent bond. For the other Ng-C bonds, although an ionic description is better suited, the degree of covalent character is also substantial therein.

14.
Phys Chem Chem Phys ; 20(3): 1953-1963, 2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29299567

RESUMEN

The efficacy of B40 borospherene to act as a host for noble gas atoms is explored via density functional theory based computations. Although the Ng@B40 complexes are thermochemically unstable with respect to dissociation into free Ng and B40, it does not rule out their viability as all the systems possess a high activation free energy barrier (84.7-206.3 kcal mol-1). Therefore, once they are formed, it is hard to take out the Ng atom. Two Ng atoms can also be incorporated within B40 for the lighter Ng atoms (He and Ne). In fact, the destabilization offered by the encapsulation of one and two He atoms and one Ne atom inside B40 is significantly less than that in experimentally synthesized He@C20H20, highlighting their greater possibility for synthesis. Although Ar2 and Kr2 encapsulated B40 systems are very much destabilized by the repulsive interaction between Ng2 and B40, an inspection of the bonding situation reveals that the confinement can even induce some degree of covalent interaction between two otherwise non-bonded Ng atoms. Ng atoms transfer electrons towards B40 which is smaller for lighter Ng atoms and gradually increases along He to Rn. Even if the electrostatic interaction between Ng and B40 is the most predominant term in these systems, the extent of the orbital interaction is also considerable. However, the very large Pauli repulsion counterbalances the attractive interaction, eventually turning the interaction repulsive in nature. Ng@B40 also shows dynamical behaviour involving continuous exchange between hexagonal and heptagonal holes, similar to the host cage, as understood from the very little variation in the activation barrier because of the Ng encapsulation. Furthermore, sandwich complexes like [(η5-C5Me5)Fe(η6-B40)]+ and [(η5-C5Me5)Fe(η7-B40)]+ are noted to be viable with the latter being slightly more stable than the former. The encapsulation of Xe slightly improves the dissociation energy associated with the decomposition into Xe@B40 and [Fe(η5-C5Me5)]+ compared to that in the bare one.

15.
Phys Chem Chem Phys ; 20(18): 12350-12355, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29701211

RESUMEN

We report a family of systems having a planar pentacoordinate carbon (ppC) based on the next heavier analogue of CAl5+, the ppC system par excellence. Although because of the larger size of Ga, the ppC isomer is not even a local minimum in CGa5+, a single isoelectronic substitution of Ga by smaller sized Be maximizes the bonding in the ppC form. Retaining the 18 valence electron rule, the global minimum structures of CGa4Be, CGa3Be2-, CGa2Be32-, and CGaBe43- clusters and their corresponding lithium salts have a ppC.

16.
J Phys Chem A ; 122(37): 7391-7401, 2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30110546

RESUMEN

Metal acetylides (MCCH, M = Cu, Ag, Au) were already experimentally detected in molecular form. Herein, we investigate the possibility of noble gas (Ng) insertion within the C-H bond of MCCH and their stability is compared with those of the reported MNgCCH and HCCNgH molecules. Our coupled-cluster-level computations show that MCCNgH (Ng = Kr, Xe, Rn) systems are local minima on the corresponding potential energy surfaces, whereas their lighter analogues do not remain in the chemically bound form. Further, their stability is analyzed with respect to all possible dissociation channels. The most favorable dissociation channel leads to the formation of free Ng and MCCH. However, there exists a high free energy barrier (29.3-46.9 kcal/mol) to hinder the dissociation. The other competitive processes against their stability include two-body and three-body neutral dissociation channels, MCCNgH → MCC + NgH and MCCNgH → MCC + Ng + H, respectively, which are slightly exergonic in nature at 298 K for Ng = Kr, Xe and M = Cu, Ag, and for AuCCKrH. However, the Xe analogues for Cu and Ag and AuCCKrH would be viable at a lower temperature. AuCCNgH (Ng = Kr-Rn) molecules are the best candidates for experimental realization, since they have higher dissociation energy values and higher kinetic protection in the case of feasible dissociation channels compared to the Cu and Ag systems. A detailed bonding analysis indicates that the Ng-H bonds are genuine covalent bonds and there is also a substantial covalent character in Ng-C contacts of these molecules. Moreover, the possibility of insertion of two Xe atoms in AuCCH resulting in AuXeCCXeH and the stability of XeAuXeCCXeH are also tested herein.

17.
Chemistry ; 23(31): 7463-7473, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28272760

RESUMEN

The interaction among E3 (E=Si, Ge, Sn) clusters and different ligands (L) encompassing five carbon-based donors (cyclic (alkyl)(amino)carbene (cAAC), N-heterocyclic carbene (NHC), saturated NHC (SNHC), mesoionic carbenes (MIC1, and MIC2)), two nitrogen-based donors (trimethylamine and pyridine), and two phosphorous-based donors (phosphinine and trimethylphosphine) in E3 (L)3 complexes is explored through DFT computations. Although all carbenes form very strong bonds with E3 clusters, cAAC makes the strongest bond with Si3 and Ge3 clusters, and MIC1 with the Sn3 cluster. Nevertheless, other ligand-bound complexes are also viable at room temperature. This finding indicates that experimentalists may make use of them to synthesize the desired clusters based on precursor availability. The nature of the interaction in E-L bonds is analyzed through natural bond orbital analysis; energy decomposition analysis, in combination with the natural orbital for chemical valence; and adaptive natural density partitioning analysis. The L→E σ-donation and L←E π-back-donation play important roles in making contacts between L and E3 clusters favorable; where the former is significantly more dominant over the latter.

18.
Phys Chem Chem Phys ; 19(3): 2286-2293, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28054679

RESUMEN

A coupled-cluster study is performed on CO bound BeY complexes (Y = O, CO3, SO4, NH, NCN, and NBO) to understand the effect of attached ligands (Y) on the CO binding ability and C-O stretching frequency (νCO). Herein, we report that BeNCN has the highest CO binding ability (via both C- and O-side binding) among the studied neutral Be-based clusters, whereas OCBeSO4 has the highest νCO among the neutral carbonyls. The nature and extent of shift in νCO compared to free CO are explained in terms of change in polarization in the bonding orbitals of CO and relative contribution from OC→BeY or CO→BeY σ-donation, and OC←BeY or CO←BeY π-back-donation. The largest blue-shift in OCBeSO4 and the largest red-shift in COBeNH are consequences of the smallest OC←BeSO4 π-back-donation and the largest CO←BeNH π-back-donation, respectively.

19.
Phys Chem Chem Phys ; 19(36): 24448-24452, 2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28853457

RESUMEN

The selectivity of cucurbit[7]uril (CB[7]) towards adsorbing a series of 14 molecules encompassing four hydrocarbons (C2H2, C2H4, C2H6, and CH4), diatomic molecules of halogens (F2 and Cl2), nitrogen oxides (NO2 and NO), carbon oxides (CO2 and CO), SO2, H2S, N2, and H2 is explored via a density functional theory based study. CB[7] is noted to have high selectivity towards adsorbing SO2 over the other considered molecules, highlighting its probable utility to separate SO2 from flue gas or other gas mixtures containing these molecules. The nature of bonding is deciphered via the computations of non-covalent interaction indices and energy decomposition analysis. Although in all cases the dispersion interaction turns out to be the most dominating contributor in stabilizing these complexes, the electrostatic contribution is also considerable. In fact, the combined effect of these two energy terms in SO2@CB[7] is responsible for the obtained selectivity.

20.
Phys Chem Chem Phys ; 19(28): 18635-18645, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28692080

RESUMEN

Even though the concept of aromaticity and antiaromaticity is extremely important and widely used, there still exist lots of controversies in the literature, which are believed to be originated from the fact that there are so many aromatic types discovered and at the same time there are many aromaticity indexes proposed. In this work, using seven series of substituted fulvene derivatives as an example and with the information-theoretic approach in density functional reactivity theory, we examine these concepts from a different perspective. We investigate the changing patterns of Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, information gain, Onicescu information energy, and relative Renyi entropy on the ring carbon atoms of these systems. Meanwhile, we also consider variation trends of four representative kinds of aromaticity indexes such as FLU, HOMA, ASE and NICS. Statistical analyses among these quantities show that with the same ring structure of the derivatives, both information-theoretic quantities and aromaticity indexes obey the same changing pattern, which are valid across all seven systems studied. However, cross correlations between these two sets of quantities yield two completely opposite patterns. These ring-structure dependent correlations are in good agreement with Hückel's 4n + 2 rule of aromaticity and 4n rule of antiaromaticity. Our results should provide a novel and complementary viewpoint on how aromaticity and antiaromaticity should be appreciated and categorized. More studies are in progress to further our understanding about the matter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA