Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34681615

RESUMEN

BACKGROUND: Carfilzomib is a first-line proteasome inhibitor indicated for relapsed/refractory multiple myeloma (MM), with its clinical use being hampered by cardiotoxic phenomena. We have previously established a translational model of carfilzomib cardiotoxicity in young adult mice, in which metformin emerged as a prophylactic therapy. Considering that MM is an elderly disease and that age is an independent risk factor for cardiotoxicity, herein, we sought to validate carfilzomib's cardiotoxicity in an in vivo model of aging. METHODS: Aged mice underwent the translational two- and four-dose protocols without and with metformin. Mice underwent echocardiography and were subsequently sacrificed for molecular analyses in the blood and cardiac tissue. RESULTS: Carfilzomib decreased proteasomal activity both in PBMCs and myocardium in both protocols. Carfilzomib induced mild cardiotoxicity after two doses and more pronounced cardiomyopathy in the four-dose protocol, while metformin maintained cardiac function. Carfilzomib led to an increased Bip expression and decreased AMPKα phosphorylation, while metformin coadministration partially decreased Bip expression and induced AMPKα phosphorylation, leading to enhanced myocardial LC3B-dependent autophagy. CONCLUSION: Carfilzomib induced cardiotoxicity in aged mice, an effect significantly reversed by metformin. The latter possesses translational importance as it further supports the clinical use of metformin as a potent prophylactic therapy.


Asunto(s)
Envejecimiento , Corazón/efectos de los fármacos , Metformina/farmacología , Oligopéptidos/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia/efectos de los fármacos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Miocardio/citología , Miocardio/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína Fosfatasa 2/metabolismo , Regulación hacia Arriba/efectos de los fármacos
2.
Br J Pharmacol ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38679957

RESUMEN

BACKGROUND AND PURPOSE: Cancer therapy-related cardiovascular adverse events (CAEs) in presence of comorbidities, are in the spotlight of the cardio-oncology guidelines. Carfilzomib (Cfz), indicated for relapsed/refractory multiple myeloma (MM), presents with serious CAEs. MM is often accompanied with co-existing comorbidities. However, Cfz use in MM patients with cardiometabolic syndrome (CMS) or in heart failure with reduced ejection fraction (HFrEF), is questionable. EXPERIMENTAL APPROACH: ApoE-/- and C57BL6/J male mice received 14 weeks Western Diet (WD) (CMS models). C57BL6/J male mice underwent permanent LAD ligation for 14 days (early-stage HFrEF model). CMS- and HFrEF-burdened mice received Cfz for two consecutive or six alternate days. Daily metformin and atorvastatin administrations were performed additionally to Cfz, as prophylactic interventions. Mice underwent echocardiography, while proteasome activity, biochemical and molecular analyses were conducted. KEY RESULTS: CMS did not exacerbate Cfz left ventricular (LV) dysfunction, whereas Cfz led to metabolic complications in both CMS models. Cfz induced autophagy and Ca2+ homeostasis dysregulation, whereas metformin and atorvastatin prevented Cfz-mediated LV dysfunction and molecular deficits in the CMS-burdened myocardium. Early-stage HFrEF led to depressed LV function and increased protein phosphatase 2A (PP2A) activity. Cfz further increased myocardial PP2A activity, inflammation and Ca2+-cycling dysregulation. Metformin co-administration exerted an anti-inflammatory potential on the myocardium without improving LV function. CONCLUSION AND IMPLICATIONS: CMS and HFrEF seem to exacerbate Cfz-induced CAEs, by presenting metabolism-related hidden toxicity and PP2A-related cardiac inflammation, respectively. Metformin retains its prophylactic potential in the presence of CMS, while mitigating inflammation and Ca2+ signalling dysregulation in the HFrEF myocardium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA