Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 20(2): 987-996, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36626167

RESUMEN

Despite the understanding that renal clearance is pivotal for driving the pharmacokinetics of numerous therapeutic proteins and peptides, the specific processes that occur following glomerular filtration remain poorly defined. For instance, sites of catabolism within the proximal tubule can occur at the brush border, within lysosomes following endocytosis, or even within the tubule lumen itself. The objective of the current study was to address these limitations and develop methodology to study the kidney disposition of a model therapeutic protein. Exenatide is a peptide used to treat type 2 diabetes mellitus. Glomerular filtration and ensuing renal catabolism have been shown to be its principal clearance pathway. Here, we designed and validated a Förster resonance energy transfer-quenched exenatide derivative to provide critical information on the renal handling of exenatide. A combination of in vitro techniques was used to confirm substantial fluorescence quenching of intact peptide that was released upon proteolytic cleavage. This evaluation was then followed by an assessment of the in vivo disposition of quenched exenatide directly within kidneys of living rats via intravital two-photon microscopy. Live imaging demonstrated rapid glomerular filtration and identified exenatide metabolism occurred within the subapical regions of the proximal tubule epithelia, with subsequent intracellular trafficking of cleaved fragments. These results provide a novel examination into the real-time, intravital disposition of a protein therapeutic within the kidney and offer a platform to build upon for future work.


Asunto(s)
Diabetes Mellitus Tipo 2 , Exenatida , Riñón , Animales , Ratas , Diabetes Mellitus Tipo 2/metabolismo , Exenatida/metabolismo , Exenatida/farmacocinética , Riñón/metabolismo , Túbulos Renales Proximales/metabolismo , Péptidos/metabolismo
2.
Immunity ; 39(1): 97-110, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23871207

RESUMEN

It remains unclear whether basophils and mast cells are derived from a common progenitor. Furthermore, how basophil versus mast cell fate is specified has not been investigated. Here, we have identified a population of granulocyte-macrophage progenitors (GMPs) that were highly enriched in the capacity to differentiate into basophils and mast cells while retaining a limited capacity to differentiate into myeloid cells. We have designated these progenitor cells "pre-basophil and mast cell progenitors" (pre-BMPs). STAT5 signaling was required for the differentiation of pre-BMPs into both basophils and mast cells and was critical for inducing two downstream molecules: C/EBPα and MITF. We have identified C/EBPα as the critical basophil transcription factor for specifying basophil cell fate and MITF as the crucial transcription factor for specifying mast cell fate. C/EBPα and MITF silenced each other's transcription in a directly antagonistic fashion. Our study reveals how basophil and mast cell fate is specified.


Asunto(s)
Basófilos/inmunología , Proteína alfa Potenciadora de Unión a CCAAT/inmunología , Mastocitos/inmunología , Factor de Transcripción Asociado a Microftalmía/inmunología , Animales , Basófilos/citología , Basófilos/metabolismo , Western Blotting , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Células Cultivadas , Citometría de Flujo , Perfilación de la Expresión Génica , Células Progenitoras de Granulocitos y Macrófagos/citología , Células Progenitoras de Granulocitos y Macrófagos/inmunología , Células Progenitoras de Granulocitos y Macrófagos/metabolismo , Células HEK293 , Humanos , Mastocitos/citología , Mastocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Células Mieloides/inmunología , Células Mieloides/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/inmunología , Factor de Transcripción STAT5/metabolismo , Células Madre/inmunología , Células Madre/metabolismo
3.
Biochem Biophys Res Commun ; 529(3): 740-746, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32736701

RESUMEN

Endocytosis by podocytes is gaining increased attention as a biologic means of removing large proteins such as serum albumin from the glomerular barrier. Some of this function has been attributed to the megalin/cubilin (Lrp2/Cubn) receptor complex and the albumin recycling protein FcRn (Fcgrt). However, whether other glomerular cells possess the potential to perform this same phenomenon or express these proteins remains uncharacterized. Mesangial cells are uniquely positioned in glomeruli and represent a cell type capable of performing several diverse functions. Here, the expression of megalin and FcRn in murine mesangial cells along with the megalin adaptor protein Dab-2 (Dab2) was shown for the first time. Cubilin mRNA expression was detected, but the absence of the cubilin partner amnionless (Amn) suggested that cubilin is minimally functional, if at all, in these cells. Mesangial cell endocytosis of albumin was characterized and shown to involve a receptor-mediated process. Albumin endocytosis was significantly impaired (p < 0.01) under inducible megalin knockdown conditions in stably transduced mesangial cells. The current work provides both the novel identification of megalin and FcRn in mesangial cells and the functional demonstration of megalin-mediated albumin endocytosis.


Asunto(s)
Endocitosis , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Células Mesangiales/citología , Albúmina Sérica Bovina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Bovinos , Línea Celular , Antígenos de Histocompatibilidad Clase I/metabolismo , Células Mesangiales/metabolismo , Ratones , Receptores Fc/metabolismo
4.
J Transl Med ; 18(1): 392, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33059716

RESUMEN

BACKGROUND: Intracranial aneurysms (IAs) are dangerous because of their potential to rupture. We previously found significant RNA expression differences in circulating neutrophils between patients with and without unruptured IAs and trained machine learning models to predict presence of IA using 40 neutrophil transcriptomes. Here, we aim to develop a predictive model for unruptured IA using neutrophil transcriptomes from a larger population and more robust machine learning methods. METHODS: Neutrophil RNA extracted from the blood of 134 patients (55 with IA, 79 IA-free controls) was subjected to next-generation RNA sequencing. In a randomly-selected training cohort (n = 94), the Least Absolute Shrinkage and Selection Operator (LASSO) selected transcripts, from which we constructed prediction models via 4 well-established supervised machine-learning algorithms (K-Nearest Neighbors, Random Forest, and Support Vector Machines with Gaussian and cubic kernels). We tested the models in the remaining samples (n = 40) and assessed model performance by receiver-operating-characteristic (ROC) curves. Real-time quantitative polymerase chain reaction (RT-qPCR) of 9 IA-associated genes was used to verify gene expression in a subset of 49 neutrophil RNA samples. We also examined the potential influence of demographics and comorbidities on model prediction. RESULTS: Feature selection using LASSO in the training cohort identified 37 IA-associated transcripts. Models trained using these transcripts had a maximum accuracy of 90% in the testing cohort. The testing performance across all methods had an average area under ROC curve (AUC) = 0.97, an improvement over our previous models. The Random Forest model performed best across both training and testing cohorts. RT-qPCR confirmed expression differences in 7 of 9 genes tested. Gene ontology and IPA network analyses performed on the 37 model genes reflected dysregulated inflammation, cell signaling, and apoptosis processes. In our data, demographics and comorbidities did not affect model performance. CONCLUSIONS: We improved upon our previous IA prediction models based on circulating neutrophil transcriptomes by increasing sample size and by implementing LASSO and more robust machine learning methods. Future studies are needed to validate these models in larger cohorts and further investigate effect of covariates.


Asunto(s)
Aneurisma Intracraneal , Estudios de Cohortes , Ontología de Genes , Humanos , Aneurisma Intracraneal/genética , Neutrófilos , Curva ROC
5.
Am J Physiol Renal Physiol ; 315(5): F1191-F1207, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29949391

RESUMEN

The megalin/cubilin complex is responsible for the majority of serum protein reclamation in the proximal tubules. The current study examined if decreases in their renal expression, along with the albumin recycling protein neonatal Fc receptor (FcRn) could account for proteinuria/albuminuria in the Zucker diabetic fatty rat model of type 2 diabetes. Immunoblots of renal cortex samples obtained at worsening disease stages demonstrated no loss in megalin, cubilin, or FcRn, even when proteinuria was measured. Additionally, early diabetic rats exhibited significantly increased renal megalin expression when compared with controls (adjusted P < 0.01). Based on these results, the ability of insulin to increase megalin was examined in a clonal subpopulation of the opossum kidney proximal tubule cell line. Insulin treatments (24 h, 100 nM) under high glucose conditions significantly increased megalin protein ( P < 0.0001), mRNA ( P < 0.0001), and albumin endocytosis. The effect on megalin expression was prevented with inhibitors against key effectors of insulin intracellular signaling, phosphatidylinositide 3-kinase and Akt. Studies using rapamycin to inhibit the mechanistic target of rapamycin complex 1 (mTORC1) resulted in a loss of insulin-induced megalin expression. However, subsequent evaluation demonstrated these effects were independent of initial mTORC1 suppression. The presented results provide insight into the expression of megalin, cubilin, and FcRn in type 2 diabetes, which may be impacted by elevated insulin and glucose. Furthermore, proximal tubule endocytic activity in early diabetics may be enhanced, a process that could have a significant role in proteinuria-induced renal damage.


Asunto(s)
Albuminuria/metabolismo , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/metabolismo , Insulina/farmacología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Albuminuria/etiología , Albuminuria/genética , Albuminuria/fisiopatología , Animales , Células Cultivadas , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Endocitosis/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Túbulos Renales Proximales/fisiopatología , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Zarigüeyas , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Zucker , Receptores de Superficie Celular/metabolismo , Receptores Fc/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Regulación hacia Arriba
6.
Am J Physiol Renal Physiol ; 315(3): F487-F502, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29693447

RESUMEN

Several lines of evidence suggest that gut bacterial microbiota is altered in patients with chronic kidney disease (CKD), though the mechanism of which this dysbiosis takes place is not well understood. Recent studies delineated changes in gut microbiota in both CKD patients and experimental animal models using microarray chips. We present 16S ribosomal RNA gene sequencing of both stool pellets and small bowel contents of C57BL/6J mice that underwent a remnant kidney model and establish that changes in microbiota take place in the early gastrointestinal tract. Increased intestinal urea concentration has been hypothesized as a leading contributor to dysbiotic changes in CKD. We show that urea transporters (UT)-A and UT-B mRNA are both expressed throughout the whole gastrointestinal tract. The noted increase in intestinal urea concentration appears to be independent of UTs' expression. Urea supplementation in drinking water resulted in alteration in bacterial gut microbiota that is quite different than that seen in CKD. This indicates that increased intestinal urea concentration might not fully explain the CKD- associated dysbiosis.


Asunto(s)
Bacterias/metabolismo , Disbiosis , Microbioma Gastrointestinal , Intestino Delgado/microbiología , Insuficiencia Renal Crónica/microbiología , Urea/metabolismo , Uremia/microbiología , Administración Oral , Animales , Bacterias/clasificación , Bacterias/genética , Modelos Animales de Enfermedad , Heces/microbiología , Interacciones Huésped-Patógeno , Hidrólisis , Intestino Delgado/metabolismo , Masculino , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos C57BL , Insuficiencia Renal Crónica/metabolismo , Ribotipificación , Urea/administración & dosificación , Ureasa/metabolismo , Uremia/metabolismo
7.
Clin Immunol ; 168: 30-36, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27140729

RESUMEN

Patients with Sjogren's syndrome (SS) have been shown to have abnormal B cell function and increased numbers of marginal zone B cells (MZB and MZB precursors. The current studies utilized the Interleukin 14 alpha transgenic mouse model (IL14aTG) for SS to investigate the roles of marginal zone B cells (MZB) of the innate immune system in the pathophysiology of the disease. Eliminating MZB from IL14aTG mice by B cell specific deletion of RBP-J resulted in complete elimination of all disease manifestations of SS. Mice had normal salivary gland secretions, negative autoantibodies and normal histology of the salivary and lacrimal glands compared to IL14aTG mice at the same time points. In contrast, eliminating B1 cells by deleting btk did not ameliorate the disease. Therefore, MZB are critical for the development of SS.


Asunto(s)
Linfocitos B/inmunología , Modelos Animales de Enfermedad , Inmunidad Innata/inmunología , Síndrome de Sjögren/inmunología , Animales , Autoanticuerpos/inmunología , Linfocitos B/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Inmunidad Innata/genética , Interleucinas/genética , Interleucinas/inmunología , Interleucinas/metabolismo , Aparato Lagrimal/inmunología , Aparato Lagrimal/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Glándulas Salivales/inmunología , Glándulas Salivales/metabolismo , Síndrome de Sjögren/genética , Síndrome de Sjögren/metabolismo , Proteínas de Transporte Vesicular
8.
Kidney Int ; 87(5): 930-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25565310

RESUMEN

In chronic serum sickness, glomerular immune complexes form, yet C57BL/6 mice do not develop glomerulonephritis unless complement factor H (CfH) is absent, indicating the relevance of complement regulation. Complement receptor 3 (CD11b) and Fcγ receptors on leukocytes, and CfH on platelets, can bind immune complexes. Here we induced immune complex-mediated glomerulonephritis in CfH(-/-) mice chimeric for wild-type, CfH(-/-), CD11b(-/-), or FcRγ(-/-) bone marrow stem cells. Glomerulonephritis was worse in CD11b(-/-) chimeras compared with all others, whereas disease in FcRγ(-/-) and wild-type chimeras was comparable. Disease tracked strongly with humoral immune responses, but not glomerular immune complex deposits. Interstitial inflammation with M1 macrophages strongly correlated with glomerulonephritis scores. CD11b(-/-) chimeras had significantly more M1 macrophages and CD4(+) T cells. The renal dendritic cell populations originating from bone marrow-derived CD11c(+) cells were similar in all experimental groups. CD11b(+) cells bearing colony-stimulating factor 1 receptor were present in kidneys, including CD11b(-/-) chimeras; these cells correlated negatively with glomerulonephritis scores. Thus, experimental immune complex-mediated glomerulonephritis is associated with accumulation of M1 macrophages and CD4(+) T cells in kidneys and functional renal insufficiency. Hence, CD11b on mononuclear cells is instrumental in generating an anti-inflammatory response in the inflamed kidney.


Asunto(s)
Antígeno CD11b/metabolismo , Factor H de Complemento/metabolismo , Glomerulonefritis/inmunología , Leucocitos/metabolismo , Receptores de IgG/metabolismo , Animales , Complejo Antígeno-Anticuerpo/metabolismo , Apoferritinas/inmunología , Médula Ósea/metabolismo , Antígeno CD11b/genética , Antígenos CD18/metabolismo , Factor H de Complemento/genética , Glomerulonefritis/metabolismo , Inmunoglobulina G/metabolismo , Ratones Endogámicos C57BL , Receptor de Anafilatoxina C5a/metabolismo , Receptores de IgG/genética , Enfermedad del Suero/complicaciones
9.
Stem Cells Dev ; 33(7-8): 153-167, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38366751

RESUMEN

Mouse postnatal neural stem cells (pNSCs) can be expanded in vitro in the presence of epidermal growth factor and fibroblast growth factor 2 and upon removal of these factors cease proliferation and generate neurons, astrocytes, and oligodendrocytes. The genetic requirements for self-renewal and lineage-commitment of pNSCs are incompletely understood. In this study, we show that the transcription factors NFIA and NFIB, previously shown individually, to be essential for the normal commitment of pNSCs to the astrocytic lineage in vivo, are jointly required for normal self-renewal of pNSCs in vitro and in vivo. Using conditional knockout alleles of Nfia and Nfib, we show that the simultaneous loss of these two genes under self-renewal conditions in vitro reduces the expression of the proliferation markers PCNA and Ki67, eliminates clonogenicity of the cells, reduces the number of cells in S phase, and induces aberrant differentiation primarily into the neuroblast lineage. This phenotype requires the loss of both genes and is not seen upon loss of Nfia or Nfib alone, nor with combined loss of Nfia and Nfix or Nfib and Nfix. These data demonstrate a unique combined requirement for both Nfia and Nfib for pNSC self-renewal.


Asunto(s)
Factores de Transcripción NFI , Células-Madre Neurales , Animales , Ratones , Diferenciación Celular/fisiología , Autorrenovación de las Células , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Factores de Transcripción NFI/genética , Factores de Transcripción NFI/metabolismo
10.
Pilot Feasibility Stud ; 10(1): 65, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650042

RESUMEN

BACKGROUND: Frailty, a syndrome characterized by decreased reserve and resistance to stressors across multiple physiologic systems, is highly prevalent in people living with multiple sclerosis (pwMS), independent of age or disability level. Frailty in MS is strongly associated with adverse clinical outcomes, such as falls, and may aggravate MS-related symptoms. Consequently, there is a pressing necessity to explore and evaluate strategies to reduce frailty levels in pwMS. The purpose of this pilot randomized controlled trial (RCT) will be to examine the feasibility and preliminary efficacy of a multimodal exercise training program to reduce frailty in pwMS. METHODS: A total of 24 participants will be randomly assigned to 6 weeks of multimodal exercise or to a waitlist control group with a 1:1 allocation. PwMS aged 40-65 years and living with frailty will be eligible. The multimodal exercise program will consist of cognitive-motor rehabilitation (i.e., virtual reality treadmill training) combined with progressive, evidence-based resistance training. At baseline and post-intervention, participants will complete the Evaluative Frailty Index for Physical Activity (EFIP), measures of fall risk, and quality of life. Frailty-related biomarkers will also be assessed. In addition, the feasibility of the multimodal exercise program will be systematically and multidimensionally evaluated. DISCUSSION: To date, no RCT has yet been conducted to evaluate whether targeted exercise interventions can minimize frailty in MS. The current study will provide novel data on the feasibility and preliminary efficacy of multimodal exercise training as a strategy for counteracting frailty in pwMS. TRIAL REGISTRATION: ClinicalTrials.gov, NCT06042244 (registered in September 2023).

11.
EBioMedicine ; 103: 105093, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569318

RESUMEN

BACKGROUND: Human restricted genes contribute to human specific traits in the immune system. CHRFAM7A, a uniquely human fusion gene, is a negative regulator of the α7 nicotinic acetylcholine receptor (α7 nAChR), the highest Ca2+ conductor of the ACh receptors implicated in innate immunity. Understanding the mechanism of how CHRFAM7A affects the immune system remains unexplored. METHODS: Two model systems are used, human induced pluripotent stem cells (iPSC) and human primary monocytes, to characterize α7 nAChR function, Ca2+ dynamics and decoders to elucidate the pathway from receptor to phenotype. FINDINGS: CHRFAM7A/α7 nAChR is identified as a hypomorphic receptor with mitigated Ca2+ influx and prolonged channel closed state. This shifts the Ca2+ reservoir from the extracellular space to the endoplasmic reticulum (ER) leading to Ca2+ dynamic changes. Ca2+ decoder small GTPase Rac1 is then activated, reorganizing the actin cytoskeleton. Observed actin mediated phenotypes include cellular adhesion, motility, phagocytosis and tissue mechanosensation. INTERPRETATION: CHRFAM7A introduces an additional, human specific, layer to Ca2+ regulation leading to an innate immune gain of function. Through the actin cytoskeleton it drives adaptation to the mechanical properties of the tissue environment leading to an ability to invade previously immune restricted niches. Human genetic diversity predicts profound translational significance as its understanding builds the foundation for successful treatments for infectious diseases, sepsis, and cancer metastasis. FUNDING: This work is supported in part by the Community Foundation for Greater Buffalo (Kinga Szigeti) and in part by NIH grant R01HL163168 (Yongho Bae).


Asunto(s)
Citoesqueleto de Actina , Señalización del Calcio , Células Madre Pluripotentes Inducidas , Receptor Nicotínico de Acetilcolina alfa 7 , Humanos , Citoesqueleto de Actina/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Calcio/metabolismo , Monocitos/metabolismo , Inmunidad Innata , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética , Fagocitosis
12.
Immunology ; 139(3): 328-37, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23347386

RESUMEN

Complement factor H (Cfh) is a key regulator of the complement cascade and protects C57BL/6 mice from immune complex-mediated complement-dependent glomerulonephritis. In chronic serum sickness (CSS) there are increased deposits of immune complexes in the glomeruli with inflammation and a scarring phenotype. As cucurmin is an effective anti-inflammatory agent and reduces complement activation, we hypothesized that it should alleviate renal disease in this setting. To determine the effectiveness of curcumin, an apoferritin-induced CSS model in Cfh-deficient (Cfh(-/-)) mice was used. Curcumin treatment (30 mg/kg) given every day in parallel with apoferritin reduced glomerulonephritis and enhanced kidney function (blood urea nitrogen, 45·4 ± 7·5 versus 35·6 ± 5·1; albuminuria, 50·1 ± 7·1 versus 15·7 ± 7·1; glomerulonephritis, 2·62 + 0·25 versus 2 + 0·3, P < 0·05). In line with reduced IgG deposits in mice with CSS given curcumin, C9 deposits were reduced indicating reduced complement activation. Mice treated with curcumin had a significant reduction in the number of splenic CD19(+) B cells and the ratio of CD19 : CD3 cells (P < 0·05) with no change in the T-cell population. Myeloperoxidase assay showed reduced macrophages in the kidney. However, a significant reduction in the M2 subset of splenic macrophages by apoferritin was prevented by curcumin, suggesting a protective function. Curcumin treatment reduced mRNA expression of inflammatory proteins monocyte chemoattractant protein-1 and transforming growth factor-ß and matrix proteins, fibronectin, laminin and collagen. Our results clearly illustrate that curcumin reduces glomerulosclerosis, improves kidney function and could serve as a therapeutic agent during serum sickness.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Curcumina/uso terapéutico , Glomerulonefritis/tratamiento farmacológico , Enfermedades del Complejo Inmune/tratamiento farmacológico , Enfermedad del Suero/tratamiento farmacológico , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacología , Apoferritinas/administración & dosificación , Enfermedad Crónica , Activación de Complemento/efectos de los fármacos , Factor H de Complemento/deficiencia , Curcumina/administración & dosificación , Curcumina/farmacología , Glomerulonefritis/etiología , Humanos , Pruebas de Función Renal , Masculino , Ratones , Ratones Endogámicos C57BL , Resultado del Tratamiento
13.
Clin Dev Immunol ; 2013: 836989, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24489579

RESUMEN

Using a reversible UUO model (rUUO), we have demonstrated that C57BL/6 mice are susceptible to development of CKD after obstruction-mediated kidney injury while BALB/c mice are resistant. We hypothesized that selective systemic depletion of subpopulations of inflammatory cells during injury or repair might alter the development of CKD. To investigate the impact of modification of Th-lymphocytes or macrophage responses on development of CKD after rUUO, we used an anti-CD4 antibody (GK1.5) or liposomal clodronate to systemically deplete CD4(+) T cells or monocyte/macrophages, respectively, prior to and throughout the rUUO protocol. Flow cytometry and immunohistochemistry confirmed depletion of target cell populations. C57BL/6 mice treated with the GK1.5 antibody to deplete CD4(+) T cells had higher BUN levels and delayed recovery from rUUO. Treatment of C57BL/6 mice with liposomal clodronate to deplete monocyte/macrophages led to a relative protection from CKD as assessed by BUN values. Our results demonstrate that modulation of the inflammatory response during injury and repair altered the susceptibility of C57BL/6 mice to development of CKD in our rUUO model.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Depleción Linfocítica , Macrófagos/inmunología , Monocitos/inmunología , Insuficiencia Renal Crónica/inmunología , Insuficiencia Renal Crónica/patología , Animales , Atrofia , Linfocitos T CD4-Positivos/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Inmunofenotipificación , Terapia de Inmunosupresión/métodos , Macrófagos/metabolismo , Masculino , Ratones , Monocitos/metabolismo , Fenotipo , Obstrucción Ureteral
14.
Front Bioeng Biotechnol ; 11: 1095926, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304141

RESUMEN

Introduction: A nanoparticle composed of a poly (lactic-co-glycolic acid) (PLGA) core and a chitosan (CS) shell with surface-adsorbed 1,3 ß-glucan (ß-glucan) was synthesized. The exposure response of CS-PLGA nanoparticles (0.1 mg/mL) with surface-bound ß-glucan at 0, 5, 10, 15, 20, or 25 ng or free ß-glucan at 5, 10, 15, 20, or 25 ng/mL in macrophage in vitro and in vivo was investigated. Results: In vitro studies demonstrate that gene expression for IL-1ß, IL-6, and TNFα increased at 10 and 15 ng surface-bound ß-glucan on CS-PLGA nanoparticles (0.1 mg/mL) and at 20 and 25 ng/mL of free ß-glucan both at 24 h and 48 h. Secretion of TNFα protein and ROS production increased at 5, 10, 15, and 20 ng surface-bound ß-glucan on CS-PLGA nanoparticles and at 20 and 25 ng/mL of free ß-glucan at 24 h. Laminarin, a Dectin-1 antagonist, prevented the increase in cytokine gene expression induced by CS-PLGA nanoparticles with surface-bound ß-glucan at 10 and 15 ng, indicating a Dectin-1 receptor mechanism. Efficacy studies showed a significant reduction in intracellular accumulation of mycobacterium tuberculosis (Mtb) in monocyte-derived macrophages (MDM) incubated with on CS-PLGA (0.1 mg/ml) nanoparticles with 5, 10, and 15 ng surface-bound ß-glucan or with 10 and 15 ng/mL of free ß-glucan. ß-glucan-CS-PLGA nanoparticles inhibited intracellular Mtb growth more than free ß-glucan alone supporting the role of ß-glucan-CS-PLGA nanoparticles as stronger adjuvants than free ß-glucan. In vivo studies demonstrate that oropharyngeal aspiration (OPA) of CS-PLGA nanoparticles with nanogram concentrations of surface-bound ß-glucan or free ß-glucan increased TNFα gene expression in alveolar macrophages and TNFα protein secretion in bronchoalveolar lavage supernatants. Discussion: Data also demonstrate no damage to the alveolar epithelium or changes in the murine sepsis score following exposure to ß-glucan-CS-PLGA nanoparticles only, indicating safety and feasibility of this nanoparticle adjuvant platform to mice by OPA.

15.
J Neurointerv Surg ; 15(e1): e33-e40, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35750484

RESUMEN

BACKGROUND: Determining stroke etiology is crucial for secondary prevention, but intensive workups fail to classify ~30% of strokes that are cryptogenic. OBJECTIVE: To examine the hypothesis that the transcriptomic profiles of clots retrieved during mechanical thrombectomy are unique to strokes of different subtypes. METHODS: We isolated RNA from the clots of 73 patients undergoing mechanical thrombectomy. Samples of sufficient quality were subjected to 100-cycle, paired-end RNAseq, and transcriptomes with less than 10 million unique reads were excluded from analysis. Significant differentially expressed genes (DEGs) between subtypes (defined by the Trial of Org 10 172 in Acute Stroke Treatment) were identified by expression analysis in edgeR. Gene ontology enrichment analysis was used to study the biologic differences between stroke etiologies. RESULTS: In all, 38 clot transcriptomes were analyzed; 6 from large artery atherosclerosis (LAA), 21 from cardioembolism (CE), 5 from strokes of other determined origin, and 6 from cryptogenic strokes. Among all comparisons, there were 816 unique DEGs, 174 of which were shared by at least two comparisons, and 20 of which were shared by all three. Gene ontology analysis showed that CE clots reflected high levels of inflammation, LAA clots had greater oxidoreduction and T-cell processes, and clots of other determined origin were enriched for aberrant platelet and hemoglobin-related processes. Principal component analysis indicated separation between these subtypes and showed cryptogenic samples clustered among several different groups. CONCLUSIONS: Expression profiles of stroke clots were identified between stroke etiologies and reflected different biologic responses. Cryptogenic thrombi may be related to multiple etiologies.


Asunto(s)
Productos Biológicos , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Trombosis , Humanos , Transcriptoma/genética , Accidente Cerebrovascular Isquémico/complicaciones , Trombectomía/efectos adversos , Trombosis/terapia , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/cirugía , Accidente Cerebrovascular/complicaciones , Isquemia Encefálica/genética , Isquemia Encefálica/cirugía , Isquemia Encefálica/complicaciones
16.
Mol Diagn Ther ; 27(1): 115-127, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36460938

RESUMEN

BACKGROUND: Following detection, rupture risk assessment for intracranial aneurysms (IAs) is critical. Towards molecular prognostics, we hypothesized that circulating blood RNA expression profiles are associated with IA risk. METHODS: We performed RNA sequencing on 68 blood samples from IA patients. Here, patients were categorized as either high or low risk by assessment of aneurysm size (≥ 5 mm = high risk) and Population, Hypertension, Age, Size, Earlier subarachnoid hemorrhage, Site (PHASES) score (≥ 1 = high risk). Modified F-statistics and Benjamini-Hochberg false discovery rate correction was performed on transcripts per million-normalized gene counts. Protein-coding genes expressed in ≥ 50% of samples with a q value < 0.05 and an absolute fold-change ≥ 2 were considered significantly differentially expressed. Bioinformatics in Ingenuity Pathway Analysis was performed to understand the biology of risk-associated expression profiles. Association was assessed between gene expression and risk via Pearson correlation analysis. Linear discriminant analysis models using significant genes were created and validated for classification of high-risk cases. RESULTS: We analyzed transcriptomes of 68 IA patients. In these cases, 31 IAs were large (≥ 5 mm), while 26 IAs had a high PHASES score. Based on size, 36 genes associated with high-risk IAs, and two were correlated with the size measurement. Alternatively, based on PHASES score, 76 genes associated with high-risk cases, and nine of them showed significant correlation to the score. Similar ontological terms were associated with both gene profiles, which reflected inflammatory signaling and vascular remodeling. Prediction models based on size and PHASES stratification were able to correctly predict IA risk status, with > 80% testing accuracy for both. CONCLUSIONS: Here, we identified genes associated with IA risk, as quantified by common clinical metrics. Preliminary classification models demonstrated feasibility of assessing IA risk using whole blood expression.


Asunto(s)
Aneurisma Roto , Aneurisma Intracraneal , Hemorragia Subaracnoidea , Humanos , Aneurisma Intracraneal/diagnóstico , Aneurisma Intracraneal/genética , Aneurisma Roto/etiología , Aneurisma Roto/genética , Hemorragia Subaracnoidea/etiología , Hemorragia Subaracnoidea/genética , Transcriptoma , Medición de Riesgo , Perfilación de la Expresión Génica
17.
Interv Neuroradiol ; : 15910199231169597, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157800

RESUMEN

BACKGROUND: Several translational animal models have been described assessing intra-arterial (IA) treatments for malignant gliomas. We describe the first endovascular animal model that allows testing of IA drug delivery as a first-line treatment, which is difficult to do in actual patients. We report a unique protocol for vascular access and IA delivery in the rat model that, unlike prior reports, does not require direct puncture and opening of proximal cerebrovasculature which carries risk of ischemia in the animal brain post-delivery. METHODS: Wistar rats underwent left femoral artery catherization with a Balt Magic 1.2F catheter or Marathon Flow directed 1.5F Microcatheter with an Asahi Chikai 0.008 micro-guidewire which was navigated to the left internal carotid artery under x-ray. 25% mannitol was administered to test blood brain barrier breakdown (BBBB). Additional rats were implanted with C6 glioma cells in the left frontal lobe. C6 Glioma-Implanted Rats (C6GRs) were monitored for overall survival and tumor growth. Tumor volumes from MRI images were calculated utilizing 3D slicer. Additional rats underwent femoral artery catheterization with Bevacizumab, carboplatin, or irinotecan injected into the left internal carotid artery to test feasibility and safety. RESULTS: A successful endovascular access and BBBB protocol was established. BBBB was confirmed with positive Evans blue staining. 10 rats were successfully implanted with C6 gliomas with confirmed growths on MRI. Overall survival was 19.75 ± 2.21 days. 5 rats were utilized for the development of our femoral catheterization protocol and BBBB testing. With regards to IA chemotherapy dosage testing, control rats tolerated targeted 10 mg/kg of bevascizumab, 2.4 mg/kg of carboplatin, and 15 mg/kg of irinotecan IA ICA injections without any complications. CONCLUSIONS: We present the first endovascular IA rat glioma model that allows selective catheterization of the intracranial vasculature and assessment of IA therapies for gliomas without need for access and sacrifice of proximal cerebrovasculature.

18.
J Biol Chem ; 286(18): 16063-73, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21454593

RESUMEN

Basophils mediate many of their biological functions by producing IL-4. However, it is unknown how the Il4 gene is regulated in basophils. Here, we report that CCAAT/enhancer-binding protein α (C/EBPα), a major myeloid transcription factor, was highly expressed in basophils. We show that C/EBPα selectively activated Il4 promoter-luciferase reporter gene transcription in response to IgE cross-linking, but C/EBPα did not activate other known Th2 or mast cell enhancers. We found that the PI3K pathway and calcineurin were essential in C/EBPα-driven Il4 promoter-luciferase gene transcription. Our mutation analyses revealed that C/EBPα drove Il4 promoter-luciferase activity depending on its DNA binding domain. Mutation of the C/EBPα-binding site in the Il4 promoter region abolished C/EBPα-driven Il4 promoter-luciferase activity. Our results further showed that a mutation in nuclear factor of activated T cells (NFAT)-binding sites in the Il4 promoter also negated C/EBPα-driven Il4 promoter-luciferase activity. Our study demonstrates that C/EBPα, in cooperation with NFAT, directly regulates Il4 gene transcription.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Regulación de la Expresión Génica/fisiología , Recubrimiento Inmunológico/fisiología , Interleucina-4/biosíntesis , Receptores de IgE/metabolismo , Transcripción Genética/fisiología , Animales , Basófilos/citología , Basófilos/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Línea Celular Tumoral , Interleucina-4/genética , Mastocitos/citología , Mastocitos/metabolismo , Ratones , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Ratas , Receptores de IgE/genética , Elementos de Respuesta/fisiología , Células Th2/citología , Células Th2/metabolismo
19.
Kidney Int ; 82(9): 961-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22832515

RESUMEN

Chronic serum sickness leads to the formation of glomerular immune complexes; however, C57BL/6 mice do not develop glomerulonephritis unless complement factor H (CFH) is absent from the plasma. Here we studied the role for C5a receptor (R) in this setting. The exaggerated humoral immune response in CFH(-/-) mice was normalized in CFH(-/-)C5aR(-/-) double knockout mice, highlighting the C5aR dependence. The CFH knockout mice developed proliferative glomerulonephritis with endocapillary F4/80+ macrophage infiltration, a process reduced in the double knockout mice. There was no interstitial inflammation by histologic criteria or flow cytometry for F4/80+ Ly6C(hi)CCR2(hi) inflammatory macrophages. There were, however, more interstitial CD3+ CD4+ T lymphocytes in CFH knockout mice with chronic serum sickness, while double knockout mice had greater than 5-fold more Ly6C(lo)CCR2(lo) anti-inflammatory macrophages compared to the CFH knockout mice. Mice lacking C5aR were significantly protected from functional renal disease as assessed by blood urea nitrogen levels. Thus, IgG- and iC3b-containing immune complexes are not inflammatory in C57BL/6 mice. Yet when these mice lack CFH, sufficient C3b persists in glomeruli to generate C5a and activate C5aR.


Asunto(s)
Glomerulonefritis/inmunología , Enfermedades del Complejo Inmune/inmunología , Enfermedades Renales/inmunología , Receptor de Anafilatoxina C5a/genética , Receptor de Anafilatoxina C5a/inmunología , Animales , Factor H de Complemento/deficiencia , Factor H de Complemento/genética , Factor H de Complemento/inmunología , Modelos Animales de Enfermedad , Glomerulonefritis/genética , Glomerulonefritis/patología , Enfermedades por Deficiencia de Complemento Hereditario , Enfermedades del Complejo Inmune/genética , Enfermedades del Complejo Inmune/patología , Riñón/inmunología , Riñón/patología , Enfermedades Renales/genética , Enfermedades Renales/patología , Macrófagos/inmunología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Suero/genética , Enfermedad del Suero/inmunología , Enfermedad del Suero/patología , Linfocitos T/inmunología , Linfocitos T/patología
20.
Immunogenetics ; 63(11): 753-71, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21710346

RESUMEN

The MHC of the turkey (Meleagris gallopavo) is divided into two genetically unlinked regions; the MHC-B and MHC-Y. Although previous studies found the turkey MHC-B to be highly similar to that of the chicken, little is known of the gene content and extent of the MHC-Y. This study describes two partially overlapping large-insert BAC clones that genetically and physically map to the turkey MHC chromosome (MGA18) but to a region that assorts independently of MHC-B. Within the sequence assembly, 14 genes were predicted including new class I- and class IIB-like loci. Additional unassembled sequences corresponded to multiple copies of the ribosomal RNA repeat unit (18S-5.8S-28S). Thus, this newly identified MHC region appears to represent a physical boundary of the turkey MHC-Y. High-resolution multi-color fluorescence in situ hybridization studies confirm rearrangement of MGA18 relative to the orthologous chicken chromosome (GGA16) in regard to chromosome architecture, but not gene order. The difference in centromere position between the species is indicative of multiple chromosome rearrangements or alternate events such as neocentromere formation/centromere inactivation in the evolution of the MHC chromosome. Comparative sequencing of commercial turkeys (six amplicons totaling 7.6 kb) identified 68 single nucleotide variants defining nine MHC-Y haplotypes. Sequences of the new class I- and class IIB-like genes are most similar to MHC-Y genes in the chicken. All three loci are expressed in the spleen. Differential transcription of the MHC-Y class IIB-like loci was evident as one class IIB-like locus was only expressed in some individuals.


Asunto(s)
Genes MHC Clase II , Genes MHC Clase I , Pavos/genética , Pavos/inmunología , Secuencia de Aminoácidos , Animales , Centrómero/genética , Pollos/clasificación , Pollos/genética , Pollos/inmunología , Mapeo Cromosómico , Expresión Génica , Ligamiento Genético , Sitios Genéticos , Haplotipos , Datos de Secuencia Molecular , Filogenia , Pavos/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA