Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Cell ; 185(24): 4634-4653.e22, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36347254

RESUMEN

Understanding the basis for cellular growth, proliferation, and function requires determining the roles of essential genes in diverse cellular processes, including visualizing their contributions to cellular organization and morphology. Here, we combined pooled CRISPR-Cas9-based functional screening of 5,072 fitness-conferring genes in human HeLa cells with microscopy-based imaging of DNA, the DNA damage response, actin, and microtubules. Analysis of >31 million individual cells identified measurable phenotypes for >90% of gene knockouts, implicating gene targets in specific cellular processes. Clustering of phenotypic similarities based on hundreds of quantitative parameters further revealed co-functional genes across diverse cellular activities, providing predictions for gene functions and associations. By conducting pooled live-cell screening of ∼450,000 cell division events for 239 genes, we additionally identified diverse genes with functional contributions to chromosome segregation. Our work establishes a resource detailing the consequences of disrupting core cellular processes that represents the functional landscape of essential human genes.


Asunto(s)
Sistemas CRISPR-Cas , Genes Esenciales , Humanos , Células HeLa , Técnicas de Inactivación de Genes , Fenotipo
2.
Cell ; 158(2): 397-411, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25036634

RESUMEN

To ensure the stable transmission of the genome during vertebrate cell division, the mitotic spindle must attach to a single locus on each chromosome, termed the centromere. The fundamental requirement for faithful centromere inheritance is the controlled deposition of the centromere-specifying histone, CENP-A. However, the regulatory mechanisms that ensure the precise control of CENP-A deposition have proven elusive. Here, we identify polo-like kinase 1 (Plk1) as a centromere-localized regulator required to initiate CENP-A deposition in human cells. We demonstrate that faithful CENP-A deposition requires integrated signals from Plk1 and cyclin-dependent kinase (CDK), with Plk1 promoting the localization of the key CENP-A deposition factor, the Mis18 complex, and CDK inhibiting Mis18 complex assembly. By bypassing these regulated steps, we uncoupled CENP-A deposition from cell-cycle progression, resulting in mitotic defects. Thus, CENP-A deposition is controlled by a two-step regulatory paradigm comprised of Plk1 and CDK that is crucial for genomic integrity.


Asunto(s)
Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Ciclo Celular , Línea Celular , Proteína A Centromérica , Quinasas Ciclina-Dependientes/metabolismo , Inestabilidad Genómica , Células HeLa , Humanos , Quinasa Tipo Polo 1
3.
Nature ; 617(7959): 154-161, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37100900

RESUMEN

Mitotic defects activate the spindle-assembly checkpoint, which inhibits the anaphase-promoting complex co-activator CDC20 to induce a prolonged cell cycle arrest1,2. Once errors are corrected, the spindle-assembly checkpoint is silenced, allowing anaphase onset to occur. However, in the presence of persistent unresolvable errors, cells can undergo 'mitotic slippage', exiting mitosis into a tetraploid G1 state and escaping the cell death that results from a prolonged arrest. The molecular logic that enables cells to balance these duelling mitotic arrest and slippage behaviours remains unclear. Here we demonstrate that human cells modulate the duration of their mitotic arrest through the presence of conserved, alternative CDC20 translational isoforms. Downstream translation initiation results in a truncated CDC20 isoform that is resistant to spindle-assembly-checkpoint-mediated inhibition and promotes mitotic exit even in the presence of mitotic perturbations. Our study supports a model in which the relative levels of CDC20 translational isoforms control the duration of mitotic arrest. During a prolonged mitotic arrest, new protein synthesis and differential CDC20 isoform turnover create a timer, with mitotic exit occurring once the truncated Met43 isoform achieves sufficient levels. Targeted molecular changes or naturally occurring cancer mutations that alter CDC20 isoform ratios or its translational control modulate mitotic arrest duration and anti-mitotic drug sensitivity, with potential implications for the diagnosis and treatment of human cancers.


Asunto(s)
Proteínas Cdc20 , Puntos de Control de la Fase M del Ciclo Celular , Biosíntesis de Proteínas , Humanos , Proteínas Cdc20/química , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Huso Acromático/metabolismo , Iniciación de la Cadena Peptídica Traduccional
4.
Nat Rev Mol Cell Biol ; 17(1): 16-29, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26601620

RESUMEN

The centromere is the region of the chromosome that directs its segregation in mitosis and meiosis. Although the functional importance of the centromere has been appreciated for more than 130 years, elucidating the molecular features and properties that enable centromeres to orchestrate chromosome segregation is an ongoing challenge. Most eukaryotic centromeres are defined epigenetically and require the presence of nucleosomes containing the histone H3 variant centromere protein A (CENP-A; also known as CENH3). Ongoing work is providing important molecular insights into the central requirements for centromere identity and propagation, and the mechanisms by which centromeres recruit kinetochores to connect to spindle microtubules.


Asunto(s)
Centrómero/metabolismo , Animales , ADN/química , ADN/metabolismo , Epigénesis Genética , Humanos , Cinetocoros/metabolismo , Modelos Biológicos
5.
Cell ; 154(2): 391-402, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23870127

RESUMEN

Mitotic spindle position defines the cell-cleavage site during cytokinesis. However, the mechanisms that control spindle positioning to generate equal-sized daughter cells remain poorly understood. Here, we demonstrate that two mechanisms act coordinately to center the spindle during anaphase in symmetrically dividing human cells. First, the spindle is positioned directly by the microtubule-based motor dynein, which we demonstrate is targeted to the cell cortex by two distinct pathways: a Gαi/LGN/NuMA-dependent pathway and a 4.1G/R and NuMA-dependent, anaphase-specific pathway. Second, we find that asymmetric plasma membrane elongation occurs in response to spindle mispositioning to alter the cellular boundaries relative to the spindle. Asymmetric membrane elongation is promoted by chromosome-derived Ran-GTP signals that locally reduce Anillin at the growing cell cortex. In asymmetrically elongating cells, dynein-dependent spindle anchoring at the stationary cell cortex ensures proper spindle positioning. Our results reveal the anaphase-specific spindle centering systems that achieve equal-sized cell division.


Asunto(s)
Anafase , Membrana Celular/metabolismo , Dineínas/metabolismo , Huso Acromático/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos Nucleares/metabolismo , Proteínas de Ciclo Celular , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Complejo Dinactina , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Proteínas Asociadas a Matriz Nuclear/metabolismo , Alineación de Secuencia
6.
Mol Cell ; 78(1): 127-140.e7, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32035037

RESUMEN

As cells enter mitosis, the genome is restructured to facilitate chromosome segregation, accompanied by dramatic changes in gene expression. However, the mechanisms that underlie mitotic transcriptional regulation are unclear. In contrast to transcribed genes, centromere regions retain transcriptionally active RNA polymerase II (Pol II) in mitosis. Here, we demonstrate that chromatin-bound cohesin is necessary to retain elongating Pol II at centromeres. We find that WAPL-mediated removal of cohesin from chromosome arms during prophase is required for the dissociation of Pol II and nascent transcripts, and failure of this process dramatically alters mitotic gene expression. Removal of cohesin/Pol II from chromosome arms in prophase is important for accurate chromosome segregation and normal activation of gene expression in G1. We propose that prophase cohesin removal is a key step in reprogramming gene expression as cells transition from G2 through mitosis to G1.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , Regulación de la Expresión Génica , Mitosis/genética , Transcripción Genética , Anafase/genética , Animales , Aurora Quinasa B/análisis , Ciclo Celular , Proteínas de Ciclo Celular/análisis , Línea Celular , Centrómero/enzimología , Segregación Cromosómica , Fase G1/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Humanos , Metafase/genética , Profase , ARN Polimerasa II/metabolismo , Xenopus laevis , Cohesinas
7.
Cell ; 148(3): 487-501, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22304917

RESUMEN

The multiprotein kinetochore complex must assemble at a specific site on each chromosome to achieve accurate chromosome segregation. Defining the nature of the DNA-protein interactions that specify the position of the kinetochore and provide a scaffold for kinetochore formation remain key goals. Here, we demonstrate that the centromeric histone-fold-containing CENP-T-W and CENP-S-X complexes coassemble to form a stable CENP-T-W-S-X heterotetramer. High-resolution structural analysis of the individual complexes and the heterotetramer reveals similarity to other histone fold-containing complexes including canonical histones within a nucleosome. The CENP-T-W-S-X heterotetramer binds to and supercoils DNA. Mutants designed to compromise heterotetramerization or the DNA-protein contacts around the heterotetramer strongly reduce the DNA binding and supercoiling activities in vitro and compromise kinetochore assembly in vivo. These data suggest that the CENP-T-W-S-X complex forms a unique nucleosome-like structure to generate contacts with DNA, extending the "histone code" beyond canonical nucleosome proteins.


Asunto(s)
Centrómero/química , Centrómero/metabolismo , Pollos/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Secuencia de Aminoácidos , Animales , Cromatina/química , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Histonas/metabolismo , Humanos , Cinetocoros/química , Cinetocoros/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Difracción de Rayos X
8.
Cell ; 145(3): 410-22, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21529714

RESUMEN

Accurate chromosome segregation requires assembly of the multiprotein kinetochore complex at centromeres. Although prior work identified the centromeric histone H3-variant CENP-A as the important upstream factor necessary for centromere specification, in human cells CENP-A is not sufficient for kinetochore assembly. Here, we demonstrate that two constitutive DNA-binding kinetochore components, CENP-C and CENP-T, function to direct kinetochore formation. Replacing the DNA-binding regions of CENP-C and CENP-T with alternate chromosome-targeting domains recruits these proteins to ectopic loci, resulting in CENP-A-independent kinetochore assembly. These ectopic kinetochore-like foci are functional based on the stoichiometric assembly of multiple kinetochore components, including the microtubule-binding KMN network, the presence of microtubule attachments, the microtubule-sensitive recruitment of the spindle checkpoint protein Mad2, and the segregation behavior of foci-containing chromosomes. We additionally find that CENP-T phosphorylation regulates the mitotic assembly of both endogenous and ectopic kinetochores. Thus, CENP-C and CENP-T form a critical regulated platform for vertebrate kinetochore assembly.


Asunto(s)
Autoantígenos/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Cinetocoros/metabolismo , Nucleosomas/metabolismo , Vertebrados/metabolismo , Secuencia de Aminoácidos , Animales , Proteína A Centromérica , Pollos , Células HeLa , Humanos , Mitosis , Datos de Secuencia Molecular , Fosforilación
9.
Semin Cell Dev Biol ; 117: 62-74, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33753005

RESUMEN

The kinetochore plays an essential role in facilitating chromosome segregation during cell division. This massive protein complex assembles onto the centromere of chromosomes and enables their attachment to spindle microtubules during mitosis. The kinetochore also functions as a signaling hub to regulate cell cycle progression, and is crucial to ensuring the fidelity of chromosome segregation. Despite the fact that kinetochores are large and robust molecular assemblies, they are also highly dynamic structures that undergo structural and organizational changes throughout the cell cycle. This review will highlight our current understanding of kinetochore structure and function, focusing on the dynamic processes that underlie kinetochore assembly.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Huso Acromático/metabolismo , Humanos
10.
Cell ; 135(6): 1039-52, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-19070575

RESUMEN

Kinetochore specification and assembly requires the targeted deposition of specialized nucleosomes containing the histone H3 variant CENP-A at centromeres. However, CENP-A is not sufficient to drive full-kinetochore assembly, and it is not clear how centromeric chromatin is established. Here, we identify CENP-W as a component of the DNA-proximal constitutive centromere-associated network (CCAN) of proteins. We demonstrate that CENP-W forms a DNA-binding complex together with the CCAN component CENP-T. This complex directly associates with nucleosomal DNA and with canonical histone H3, but not with CENP-A, in centromeric regions. CENP-T/CENP-W functions upstream of other CCAN components with the exception of CENP-C, an additional putative DNA-binding protein. Our analysis indicates that CENP-T/CENP-W and CENP-C provide distinct pathways to connect the centromere with outer kinetochore assembly. In total, our results suggest that the CENP-T/CENP-W complex is directly involved in establishment of centromere chromatin structure coordinately with CENP-A.


Asunto(s)
Centrómero , Proteínas Cromosómicas no Histona/metabolismo , ADN/metabolismo , Cinetocoros/metabolismo , Secuencia de Aminoácidos , Animales , Autoantígenos/genética , Autoantígenos/metabolismo , Proteína A Centromérica , Pollos , Proteínas Cromosómicas no Histona/genética , Células HeLa , Histonas/metabolismo , Humanos , Mutación , Nucleosomas/metabolismo
11.
Cell ; 135(2): 322-33, 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-18957206

RESUMEN

Kinetochores of mitotic chromosomes are coupled to spindle microtubules in ways that allow the energy from tubulin dynamics to drive chromosome motion. Most kinetochore-associated microtubule ends display curving "protofilaments," strands of tubulin dimers that bend away from the microtubule axis. Both a kinetochore "plate" and an encircling, ring-shaped protein complex have been proposed to link protofilament bending to poleward chromosome motion. Here we show by electron tomography that slender fibrils connect curved protofilaments directly to the inner kinetochore. Fibril-protofilament associations correlate with a local straightening of the flared protofilaments. Theoretical analysis reveals that protofilament-fibril connections would be efficient couplers for chromosome motion, and experimental work on two very different kinetochore components suggests that filamentous proteins can couple shortening microtubules to cargo movements. These analyses define a ring-independent mechanism for harnessing microtubule dynamics directly to chromosome movement.


Asunto(s)
Cromosomas/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Animales , Línea Celular , Cromosomas/ultraestructura , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Cinetocoros/ultraestructura , Microtúbulos/ultraestructura , Potoroidae , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Tubulina (Proteína)/metabolismo
12.
Mol Cell ; 60(6): 886-98, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26698661

RESUMEN

During mitosis, the macromolecular kinetochore complex assembles on the centromere to orchestrate chromosome segregation. The properties and architecture of the 16-subunit Constitutive Centromere-Associated Network (CCAN) that allow it to build a robust platform for kinetochore assembly are poorly understood. Here, we use inducible CRISPR knockouts and biochemical reconstitutions to define the interactions between the human CCAN proteins. We find that the CCAN does not assemble as a linear hierarchy, and instead, each sub-complex requires multiple non-redundant interactions for its localization to centromeres and the structural integrity of the overall assembly. We demonstrate that the CENP-L-N complex plays a crucial role at the core of this assembly through interactions with CENP-C and CENP-H-I-K-M. Finally, we show that the CCAN is remodeled over the cell cycle such that sub-complexes depend on their interactions differentially. Thus, an interdependent meshwork within the CCAN underlies the centromere specificity and stability of the kinetochore.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Sistemas CRISPR-Cas , Ciclo Celular , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Células HeLa , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo
13.
J Cell Sci ; 131(16)2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115751

RESUMEN

Accurate chromosome segregation critically depends on the formation of attachments between microtubule polymers and each sister chromatid. The kinetochore is the macromolecular complex that assembles at the centromere of each chromosome during mitosis and serves as the link between the DNA and the microtubules. In this Cell Science at a Glance article and accompanying poster, we discuss the activities and molecular players that are involved in generating kinetochore-microtubule attachments, including the initial stages of lateral kinetochore-microtubule interactions and maturation to stabilized end-on attachments. We additionally explore the features that contribute to the ability of the kinetochore to track with dynamic microtubules. Finally, we examine the contributions of microtubule-associated proteins to the organization and stabilization of the mitotic spindle and the control of microtubule dynamics.


Asunto(s)
Cinetocoros/fisiología , Microtúbulos/fisiología , Animales , Centrómero/metabolismo , Centrómero/fisiología , Segregación Cromosómica/fisiología , Humanos , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/metabolismo , Mitosis/fisiología , Huso Acromático/metabolismo
14.
Nat Rev Mol Cell Biol ; 9(1): 33-46, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18097444

RESUMEN

Segregation of the replicated genome during cell division in eukaryotes requires the kinetochore to link centromeric DNA to spindle microtubules. The kinetochore is composed of a number of conserved protein complexes that direct its specification and assembly, bind to spindle microtubules and regulate chromosome segregation. Recent studies have identified more than 80 kinetochore components, and are revealing how these proteins are organized into the higher order kinetochore structure, as well as how they function to achieve proper chromosome segregation.


Asunto(s)
Cinetocoros/fisiología , Cinetocoros/ultraestructura , Microtúbulos/fisiología , Microtúbulos/ultraestructura , Animales , Ciclo Celular/fisiología , Centrómero/fisiología , Centrómero/ultraestructura , Cromosomas/fisiología , Humanos
15.
Nat Methods ; 12(9): 838-40, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26192083

RESUMEN

Live-cell imaging and particle tracking provide rich information on mechanisms of intracellular transport. However, trajectory analysis procedures to infer complex transport dynamics involving stochastic switching between active transport and diffusive motion are lacking. We applied Bayesian model selection to hidden Markov modeling to infer transient transport states from trajectories of mRNA-protein complexes in live mouse hippocampal neurons and metaphase kinetochores in dividing human cells. The software is available at http://hmm-bayes.org/.


Asunto(s)
Actinas/metabolismo , Hipocampo/metabolismo , Modelos Biológicos , Imagen Molecular/métodos , Neuronas/citología , Neuronas/metabolismo , Animales , Teorema de Bayes , Células Cultivadas , Simulación por Computador , Femenino , Células HeLa , Hipocampo/citología , Humanos , Cadenas de Markov , Ratones , MicroARNs/metabolismo , Microscopía Fluorescente/métodos , Modelos Estadísticos , Reconocimiento de Normas Patrones Automatizadas/métodos , Transporte de Proteínas/fisiología , Programas Informáticos
16.
Mol Cell ; 38(3): 383-92, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20471944

RESUMEN

Accurate chromosome segregation requires carefully regulated interactions between kinetochores and microtubules, but how plasticity is achieved to correct diverse attachment defects remains unclear. Here we demonstrate that Aurora B kinase phosphorylates three spatially distinct targets within the conserved outer kinetochore KNL1/Mis12 complex/Ndc80 complex (KMN) network, the key player in kinetochore-microtubule attachments. The combinatorial phosphorylation of the KMN network generates graded levels of microtubule-binding activity, with full phosphorylation severely compromising microtubule binding. Altering the phosphorylation state of each protein causes corresponding chromosome segregation defects. Importantly, the spatial distribution of these targets along the kinetochore axis leads to their differential phosphorylation in response to changes in tension and attachment state. In total, rather than generating exclusively binary changes in microtubule binding, our results suggest a mechanism for the tension-dependent fine-tuning of kinetochore-microtubule interactions.


Asunto(s)
Segregación Cromosómica , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Aurora Quinasa B , Aurora Quinasas , Técnicas Biosensibles , Proteínas de Caenorhabditis elegans/metabolismo , Pollos , Segregación Cromosómica/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Cinetocoros/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/efectos de los fármacos , Mutación , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Transducción Genética , Moduladores de Tubulina/farmacología
17.
EMBO J ; 32(3): 424-36, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23334297

RESUMEN

The kinetochore forms a dynamic interface with microtubules from the mitotic spindle during mitosis. The Ndc80 complex acts as the key microtubule-binding complex at kinetochores. However, it is unclear how the Ndc80 complex associates with the inner kinetochore proteins that assemble upon centromeric chromatin. Here, based on a high-resolution structural analysis, we demonstrate that the N-terminal region of vertebrate CENP-T interacts with the 'RWD' domain in the Spc24/25 portion of the Ndc80 complex. Phosphorylation of CENP-T strengthens a cryptic hydrophobic interaction between CENP-T and Spc25 resulting in a phospho-regulated interaction that occurs without direct recognition of the phosphorylated residue. The Ndc80 complex interacts with both CENP-T and the Mis12 complex, but we find that these interactions are mutually exclusive, supporting a model in which two distinct pathways target the Ndc80 complex to kinetochores. Our results provide a model for how the multiple protein complexes at kinetochores associate in a phospho-regulated manner.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Animales , Calorimetría , Línea Celular Tumoral , Pollos , Cromatografía en Gel , Proteínas Cromosómicas no Histona/química , Cristalización , Proteínas del Citoesqueleto , Humanos , Cinetocoros/química , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/química , Complejos Multiproteicos/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilación , Especificidad de la Especie
18.
PLoS Biol ; 10(8): e1001378, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22927794

RESUMEN

Successful execution of the meiotic program depends on the timely establishment and removal of sister chromatid cohesion. LAB-1 has been proposed to act in the latter by preventing the premature removal of the meiosis-specific cohesin REC-8 at metaphase I in C. elegans, yet the mechanism and scope of LAB-1 function remained unknown. Here we identify an unexpected earlier role for LAB-1 in promoting the establishment of sister chromatid cohesion in prophase I. LAB-1 and REC-8 are both required for the chromosomal association of the cohesin complex subunit SMC-3. Depletion of lab-1 results in partial loss of sister chromatid cohesion in rec-8 and coh-4 coh-3 mutants and further enhanced chromatid dissociation in worms where all three kleisins are mutated. Moreover, lab-1 depletion results in increased Aurora B kinase (AIR-2) signals in early prophase I nuclei, coupled with a parallel decrease in signals for the PP1 homolog, GSP-2. Finally, LAB-1 directly interacts with GSP-1 and GSP-2. We propose that LAB-1 targets the PP1 homologs to the chromatin at the onset of meiosis I, thereby antagonizing AIR-2 and cooperating with the cohesin complex to promote sister chromatid association and normal progression of the meiotic program.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Cromátides/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Profase Meiótica I , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Aurora Quinasa B , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Intercambio Genético , Reparación del ADN , Unión Proteica , Mapeo de Interacción de Proteínas/métodos , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo , Técnicas del Sistema de Dos Híbridos
19.
Chromosome Res ; 21(4): 407-18, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23793898

RESUMEN

Chromosomal rearrangements can radically alter gene products and their function, driving tumor formation or progression. However, the molecular origins and evolution of such rearrangements are varied and poorly understood, with cancer cells often containing multiple, complex rearrangements. One mechanism that can lead to genomic rearrangements is the formation of a "dicentric" chromosome containing two functional centromeres. Indeed, such dicentric chromosomes have been observed in cancer cells. Here, we tested the ability of a single dicentric chromosome to contribute to genomic instability and neoplastic conversion in vertebrate cells. We developed a system to transiently and reversibly induce dicentric chromosome formation on a single chromosome with high temporal control. We find that induced dicentric chromosomes are frequently damaged and mis-segregated during mitosis, and that this leads to extensive chromosomal rearrangements including translocations with other chromosomes. Populations of pre-neoplastic cells in which a single dicentric chromosome is induced acquire extensive genomic instability and display hallmarks of cellular transformation including anchorage-independent growth in soft agar. Our results suggest that a single dicentric chromosome could contribute to tumor initiation.


Asunto(s)
Carcinogénesis/genética , Aberraciones Cromosómicas , Reordenamiento Génico , Genómica/métodos , Animales , Línea Celular Tumoral , Centrómero/genética , Técnica del Anticuerpo Fluorescente , Inestabilidad Genómica , Hibridación Fluorescente in Situ , Ratones , Mitosis/genética , Translocación Genética
20.
Nat Cell Biol ; 26(1): 45-56, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38168769

RESUMEN

To faithfully segregate chromosomes during vertebrate mitosis, kinetochore-microtubule interactions must be restricted to a single site on each chromosome. Prior work on pair-wise kinetochore protein interactions has been unable to identify the mechanisms that prevent outer kinetochore formation in regions with a low density of CENP-A nucleosomes. To investigate the impact of higher-order assembly on kinetochore formation, we generated oligomers of the inner kinetochore protein CENP-T using two distinct, genetically engineered systems in human cells. Although individual CENP-T molecules interact poorly with outer kinetochore proteins, oligomers that mimic centromeric CENP-T density trigger the robust formation of functional, cytoplasmic kinetochore-like particles. Both in cells and in vitro, each molecule of oligomerized CENP-T recruits substantially higher levels of outer kinetochore components than monomeric CENP-T molecules. Our work suggests that the density dependence of CENP-T restricts outer kinetochore recruitment to centromeres, where densely packed CENP-A recruits a high local concentration of inner kinetochore proteins.


Asunto(s)
Proteínas Cromosómicas no Histona , Cinetocoros , Humanos , Proteína A Centromérica/genética , Cinetocoros/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Centrómero/genética , Centrómero/metabolismo , Nucleosomas , Mitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA