Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 631(8020): 294-299, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38867054

RESUMEN

Liquid crystals, with their ability to self-assemble, strong response to an electric field and integrability into complex systems, are key materials in light-beam manipulation1. The recently discovered ferroelectric nematic liquid crystals2,3 also have considerable second-order optical nonlinearity, making them a potential material for nonlinear optics4,5. Their use as sources of quantum light could considerably extend the boundaries of photonic quantum technologies6. However, spontaneous parametric down-conversion, the basic source of entangled photons7, heralded single photons8 and squeezed light9, has so far not been observed in liquid crystals-or in any liquids or organic materials. Here we implement spontaneous parametric down-conversion in a ferroelectric nematic liquid crystal and demonstrate electric-field tunable broadband generation of entangled photons, with an efficiency comparable to that of the best nonlinear crystals. The emission rate and polarization state of photon pairs is markedly varied by applying a few volts or twisting the molecular orientation along the sample. A liquid-crystal source enables a special type of quasi-phase matching10, which is based on the molecular twist structure and is therefore reconfigurable for the desired spectral and polarization properties of photon pairs. Such sources promise to outperform standard nonlinear optical materials in terms of functionality, brightness and the tunability of the generated quantum state. The concepts developed here can be extended to complex topological structures, macroscopic devices and multi-pixel tunable quantum light sources.

2.
Opt Express ; 31(5): 7265-7276, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36859862

RESUMEN

Nonlinear interferometers with quantum correlated photons have been demonstrated to improve optical characterization and metrology. These interferometers can be used in gas spectroscopy, which is of particular interest for monitoring greenhouse gas emissions, breath analysis and industrial applications. Here, we show that gas spectroscopy can be further enhanced via the deployment of crystal superlattices. This is a cascaded arrangement of nonlinear crystals forming interferometers, allowing the sensitivity to scale with the number of nonlinear elements. In particular, the enhanced sensitivity is observed via the maximum intensity of interference fringes that scales with low concentration of infrared absorbers, while for high concentration the sensitivity is better in interferometric visibility measurements. Thus, a superlattice acts as a versatile gas sensor since it can operate by measuring different observables, which are relevant to practical applications. We believe that our approach offers a compelling path towards further enhancements for quantum metrology and imaging using nonlinear interferometers with correlated photons.

3.
Opt Lett ; 48(13): 3423-3426, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37390146

RESUMEN

Pairs of entangled photons-biphotons-are indispensable in quantum applications. However, some important spectral ranges, like the ultraviolet, have been inaccessible to them so far. Here, we use four-wave mixing in a xenon-filled single-ring photonic crystal fiber to generate biphotons with one of the photons in the ultraviolet and its entangled partner in the infrared spectral range. We tune the biphotons in frequency by varying the gas pressure inside the fiber and thus tailoring the fiber dispersion landscape. The ultraviolet photons are tunable from 271 nm to 231 nm and their entangled partners, from 764 nm to 1500 nm, respectively. Tunability up to 192 THz is achieved by adjusting the gas pressure by only 0.68 bar. At 1.43 bar, the photons of a pair are separated by more than 2 octaves. The access to ultraviolet wavelengths opens the possibility for spectroscopy and sensing with undetected photons in this spectral range.

4.
Phys Rev Lett ; 130(20): 203604, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37267533

RESUMEN

Multiphoton absorption is of vital importance in many spectroscopic, microscopic, or lithographic applications. However, given that it is an inherently weak process, the detection of multiphoton absorption signals typically requires large field intensities, hindering its applicability in many practical situations. In this Letter, we show that placing a multiphoton absorbent inside an imbalanced nonlinear interferometer can enhance the precision of multiphoton cross section estimation with respect to strategies based on photon-number measurements using coherent or even squeezed light directly transmitted through the medium. In particular, the power scaling of the sensitivity with photon flux can be increased by 1 order compared with transmission measurements of the sample with coherent light, such that the measurement precision at any given intensity can be greatly enhanced. Furthermore, we show that this enhanced measurement precision is robust against experimental imperfections leading to photon losses, which usually tend to degrade the detection sensitivity. We trace the origin of this enhancement to an optimal degree of squeezing which has to be generated in a nonlinear SU(1,1) interferometer.

5.
Opt Lett ; 47(3): 465-468, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35103652

RESUMEN

Entangled photons offer two advantages for two-photon absorption spectroscopy. One of them, the linear scaling of two-photon absorption rate with the input photon flux, is valid only at very low photon fluxes and is therefore impractical. The other is the overcoming of the classical constraints for simultaneous resolution in time-frequency and in space-wavevector. Here we consider bright squeezed vacuum (BSV) as an alternative to entangled photons. The efficiency increase it offers in comparison with coherent light is modest, but it does not depend on the photon flux. Moreover, and this is what we show in this work, BSV also provides simultaneously high resolution in time and frequency, and in space and wavevector. In our experiment, we measure the widths of the second-order correlation functions in space, time, frequency, and angle and demonstrate the violation of the constraint given by the Fourier transformation, in the case of photon pairs, known as the Mancini criterion of entanglement.

6.
Opt Lett ; 47(15): 3872-3875, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35913336

RESUMEN

The concept of "flat optics" is quickly conquering different fields of photonics, but its implementation in quantum optics is still in its infancy. In particular, polarization entanglement, strongly required in quantum photonics, is so far not realized on "flat" platforms. Meanwhile, relaxed phase matching of "flat" nonlinear optical sources enables enormous freedom in tailoring their polarization properties. Here we use this freedom to generate photon pairs with tunable polarization entanglement via spontaneous parametric downconversion (SPDC) in a 400-nm GaP film. By changing the pump polarization, we tune the polarization state of photon pairs from maximally entangled to almost disentangled, which is impossible in a single bulk SPDC source. Polarization entanglement, together with the broadband frequency spectrum, results in an ultranarrow (12 fs) Hong-Ou-Mandel effect and promises extensions to hyperentanglement.

7.
Opt Lett ; 47(4): 766-769, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167520

RESUMEN

High-gain parametric down-conversion (PDC) is inevitably accompanied by cascaded up-conversion (CUpC) of PDC radiation in a nonlinear crystal even if CUpC is nonphase matched. Here we study experimentally and theoretically the spectral properties of broadband phase-matched and nonphase-matched CUpC radiation in a beta barium borate (BBO) crystal. Our calculations of the normalized second-order correlation function predict the super-bunching of CUpC radiation.

8.
Opt Express ; 29(1): 95-104, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33362104

RESUMEN

For a squeezing-enhanced linear (so-called SU(2)) interferometer, we theoretically investigate the possibility to broaden the phase range of sub-shot-noise sensitivity. We show that this goal can be achieved by implementing detection in both output ports, with the optimal combination of the detectors outputs. With this modification, the interferometer has the phase sensitivity independent of the interferometer operation point and, similar to the standard dark port regime, is not affected by the laser technical (excess) noise. Provided that each detector is preceded by a phase-sensitive amplifier, this sensitivity could be also tolerant to the detection loss.

9.
Opt Lett ; 46(16): 4033-4036, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34388804

RESUMEN

Tunable biphotons are highly important for a wide range of quantum applications. For some applications, especially interesting are cases where two photons of a pair are far apart in frequency. Here, we report a tunable biphoton source based on a xenon-filled hollow-core photonic crystal fiber. Tunability is achieved by adjusting the pressure of the gas inside the fiber. This allows us to tailor the dispersion landscape of the fiber, overcoming the principal limitations of solid-core fiber-based biphoton sources. We report a maximum tunability of 120 THz for a pressure range of 4 bar with a continuous shift of 30 THz/bar. At 21 bar, the photons of a pair are separated by more than one octave. Despite the large separation, both photons have large bandwidths. At 17 bar, they form a very broad (110 THz) band around the frequency of the pump.

10.
Opt Lett ; 46(3): 653-656, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33528432

RESUMEN

Miniaturized entangled photon sources, in particular based on subwavelength metasurfaces, are highly demanded for the development of integrated quantum photonics. Here, as a first step towards the development of quantum optical metasurfaces (QOMs), we demonstrate generation of entangled photons via spontaneous parametric down-conversion (SPDC) from subwavelength films. We achieve photon pair generation with a high coincidence-to-accidental ratio in lithium niobate and gallium phosphide nanofilms. By implementing the fiber spectroscopy of SPDC in nanofilms, we measure a spectrum with a bandwidth of 500 nm, limited only by the overall detection efficiency. The spectrum reveals vacuum field enhancement due to a Fabry-Perot resonance inside the nonlinear films. It also suggests a strategy for observing SPDC from QOM. Our experiments lay the groundwork for future development of flat SPDC sources, including QOM.

11.
Opt Lett ; 45(15): 4264-4267, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735276

RESUMEN

We report the efficient generation of high-gain parametric down-conversion, including pump depletion, with pump powers as low as 100 µW (energies 0.1 µJ/pulse) and conversion efficiencies up to 33%. In our simple configuration, the pump beam is tightly focused into a bulk periodically poled lithium niobate crystal placed in free space. We also observe a change in the photon number statistics for both the pump and down-converted beams as the pump power increases to reach the depleted pump regime. The experimental results are a clear signature of the interplay between the pump and the down-converted beams in highly efficient parametric down-conversion sources.

12.
Opt Lett ; 45(13): 3581-3584, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630904

RESUMEN

We present a direct measurement of the spatiotemporal coherence of parametric down-conversion in the range of negative group-velocity dispersion. In this case, the frequency-angular spectra are ring-shaped, and temporal coherence is coupled to spatial coherence. Correspondingly, the lack of coherence due to spatial displacement can be compensated for with the introduction of time delay. We show a simple technique, based on a modified Mach-Zehnder interferometer, which allows us to measure time coherence and near-field space coherence simultaneously, with complete control over both variables. This technique is also suitable for the measurement of second-order coherence, where the main applications are related to two-photon spectroscopy.

13.
Opt Express ; 27(6): 7868-7885, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31052614

RESUMEN

Photon-number squeezing and correlations enable measurement of absorption with an accuracy exceeding that of the shot-noise limit. However, sub-shot noise imaging and sensing based on these methods require high detection efficiency, which can be a serious obstacle if measurements are carried out in "difficult" spectral ranges. We show that this problem can be overcome through the phase-sensitive amplification before detection. Here we propose an experimental scheme of sub-shot-noise imaging with tolerance to detection losses.

14.
Opt Express ; 27(25): 36154-36163, 2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31873400

RESUMEN

We address feasibility of continuous-variable quantum key distribution using bright multimode coherent states of light and homodyne detection. We experimentally verify the possibility to properly select signal modes by matching them with the local oscillator and this way to decrease the quadrature noise concerned with unmatched bright modes. We apply the results to theoretically predict the performance of continuous-variable quantum key distribution scheme using multimode coherent states in scenarios where modulation is applied either to all the modes or only to the matched ones, and confirm that the protocol is feasible at high overall brightness. Our results open the pathway towards full-scale implementation of quantum key distribution using bright light, thus bringing quantum communication closer to classical optics.

15.
Phys Rev Lett ; 123(12): 123606, 2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31633963

RESUMEN

Extreme events appear in many physics phenomena, whenever the probability distribution has a "heavy tail" differing very much from the equilibrium one. Most unusual are the cases of power-law (Pareto) probability distributions. Among their many manifestations in physics, from "rogue waves" in the ocean to Lévy flights in random walks, Pareto dependences can follow very different power laws. For some outstanding cases, the power exponents are less than 2, leading to indefinite values not only for higher moments but also for the mean. Here we present the first evidence of indefinite-mean Pareto distribution of photon numbers at the output of nonlinear effects pumped by parametrically amplified vacuum noise, known as bright squeezed vacuum (BSV). We observe a Pareto distribution with power exponent 1.31 when BSV is used as a pump for supercontinuum generation, and other heavy-tailed distributions (however, with definite moments) when it pumps optical harmonics generation. Unlike in other fields, we can flexibly control the Pareto exponent by changing the experimental parameters. This extremely fluctuating light is interesting for ghost imaging and for quantum thermodynamics as a resource to produce more efficiently nonequilibrium states by single-photon subtraction, the latter of which we demonstrate experimentally.

16.
Opt Lett ; 43(10): 2320-2323, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29762582

RESUMEN

Precise control of the dispersion landscape is of crucial importance if optical fibers are to be successfully used for the generation of three-photon states of light-the inverse of third-harmonic generation (THG). Here we report gas-tuning of intermodal phase-matched THG in sub-micron-diameter tapered optical fiber. By adjusting the pressure of the surrounding argon gas up to 50 bars, intermodally phase-matched third-harmonic light can be generated for pump wavelengths within a 15 nm range around 1.38 µm. We also measure the infrared fluorescence generated in the fiber when pumped in the visible and estimate that the accidental coincidence rate in this signal is lower than the predicted detection rate of photon triplets.

17.
Opt Lett ; 43(3): 375-378, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29400863

RESUMEN

We report on the observation of broadband (40 THz) bright twin beams through high-gain parametric downconversion in an aperiodically poled lithium niobate crystal. The output photon number is shown to scale exponentially with the pump power and not with the pump amplitude, as in homogeneous crystals. Photon number correlations and the number of frequency/temporal modes are assessed by spectral covariance measurements. By using sum-frequency generation on the surface of a non-phase-matched crystal, we measure a cross-correlation peak with the temporal width of 90 fs.

18.
Phys Rev Lett ; 119(22): 223603, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29286804

RESUMEN

The rate of an n-photon effect generally scales as the nth order autocorrelation function of the incident light, which is high for light with strong photon-number fluctuations. Therefore, "noisy" light sources are much more efficient for multiphoton effects than coherent sources with the same mean power, pulse duration, and repetition rate. Here we generate optical harmonics of the order of 2-4 from a bright squeezed vacuum, a state of light consisting of only quantum noise with no coherent component. We observe up to 2 orders of magnitude enhancement in the generation of optical harmonics due to ultrafast photon-number fluctuations. This feature is especially important for the nonlinear optics of fragile structures, where the use of a noisy pump can considerably increase the effect without overcoming the damage threshold.

19.
Opt Express ; 24(23): 26444-26453, 2016 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-27857377

RESUMEN

Intensified charge coupled device (ICCD) cameras are widely used in vari-ous applications such as microscopy, astronomy, spectroscopy. Often they are used as single-photon detectors, with thresholding being an essential part of the readout. In this paper, we measure the quantum efficiency of an ICCD camera in the single-photon de-tection mode using the Klyshko absolute calibration technique. The quantum efficiency is obtained as a function of the threshold value and of the wavelength of the detected light. In addition, we study the homogeneity of the photon sensitivity over the camera chip area. The experiment is performed in the autonomous regime, without using any additional detectors. We therefore demonstrate the self-calibration of an ICCD camera.

20.
Opt Lett ; 41(12): 2827-30, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27304299

RESUMEN

We report on the observation of an unusual type of parametric downconversion. In the regime where collinear degenerate emission is in the anomalous range of group-velocity dispersion, its spectrum is restricted in both angle and wavelength. Detuning from exact collinear-degenerate phase-matching leads to a ring shape of the wavelength-angular spectrum, suggesting a new type of spatiotemporal coherence and entanglement of photon pairs. By imposing a phase varying in a specific way in both angle and wavelength, one can obtain an interesting state of an entangled photon pair, with the two photons being never at the same point at the same time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA