RESUMEN
Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1-5, which are classical ATP-competitive kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems.
Asunto(s)
Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/genética , Animales , Dominio Catalítico/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Perros , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-TransferidoraRESUMEN
Although we have made great progress in understanding the complex genetic alterations that underlie human cancer, it has proven difficult to identify which molecularly targeted therapeutics will benefit which patients. Drug-specific modulation of oncogenic signaling pathways in specific patient subpopulations can predict responsiveness to targeted therapy. Here, we report a pathway-based phosphoprofiling approach to identify and quantify clinically relevant, drug-specific biomarkers for phosphatidylinositol 3-kinase (PI3K) pathway inhibitors that target AKT, phosphoinositide-dependent kinase 1 (PDK1), and PI3K-mammalian target of rapamycin (mTOR). We quantified 375 nonredundant PI3K pathway-relevant phosphopeptides, all containing AKT, PDK1, or mitogen-activated protein kinase substrate recognition motifs. Of these phosphopeptides, 71 were drug-regulated, 11 of them by all three inhibitors. Drug-modulated phosphoproteins were enriched for involvement in cytoskeletal reorganization (filamin, stathmin, dynamin, PAK4, and PTPN14), vesicle transport (LARP1, VPS13D, and SLC20A1), and protein translation (S6RP and PRAS40). We then generated phosphospecific antibodies against selected, drug-regulated phosphorylation sites that would be suitable as biomarker tools for PI3K pathway inhibitors. As proof of concept, we show clinical translation feasibility for an antibody against phospho-PRAS40(Thr246). Evaluation of binding of this antibody in human cancer cell lines, a PTEN (phosphatase and tensin homolog deleted from chromosome 10)-deficient mouse prostate tumor model, and triple-negative breast tumor tissues showed that phospho-PRAS40(Thr246) positively correlates with PI3K pathway activation and predicts AKT inhibitor sensitivity. In contrast to phosphorylation of AKT(Thr308), the phospho-PRAS40(Thr246) epitope is highly stable in tissue samples and thus is ideal for immunohistochemistry. In summary, our study illustrates a rational approach for discovery of drug-specific biomarkers toward development of patient-tailored treatments.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias/tratamiento farmacológico , Inhibidores de las Quinasa Fosfoinosítidos-3 , Medicina de Precisión , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales , Animales , Basófilos/efectos de los fármacos , Basófilos/enzimología , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Biología Computacional , Proteínas del Citoesqueleto/metabolismo , Activación Enzimática/efectos de los fármacos , Epítopos/inmunología , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Ratones , Neoplasias/enzimología , Neoplasias/patología , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfoproteínas/metabolismo , Fosfoserina/metabolismo , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacosRESUMEN
OBJECTIVE: B cells play a dominant role in the pathogenesis of several autoimmune diseases, including systemic lupus erythematosus. It is not well understood how B cell signaling contributes to autoantibody production. The goal of this study was to elucidate the role of CD72 in modulating B cell receptor (BCR)-mediated tolerogenic signaling and peripheral B cell tolerance. METHODS: A mouse model utilizing hen egg lysozyme (HEL) "anergic" B cells was studied. CD72-deficient mice carrying the BCR-specific IgHEL and/or soluble HEL (sHEL) transgenes were generated by breeding IgHEL-transgenic MD4 mice and/or sHEL-transgenic ML5 mice with congenic, CD72-deficient C57BL/6J mice. Normal and anergic B cells were isolated for analyses of B cell signaling. Aged wild-type and CD72-deficient mice were also examined for autoimmune phenomena. RESULTS: In the absence of CD72, anergic B cells inappropriately proliferated and survived in response to stimulation with self antigen. Biochemical analyses indicated that in anergic B cells, CD72 dominantly down-regulated BCR signaling to limit the antigen-induced elevation in [Ca2+]i and the activation of NFATc1, NF-kappaB, MAPK, and Akt. Mechanistically, CD72 was associated with, and regulated, the molecular adaptor Cbl-b in anergic B cells, suggesting that Cbl-b may play a role in mediating the negative effects of CD72 on BCR signaling. Moreover, in aged CD72-deficient mice, spontaneous production of antinuclear and anti-double-stranded DNA autoantibodies and features of lupus-like autoimmune disease were observed. CONCLUSION: CD72 is required to maintain B cell anergy and functions as a regulator of peripheral B cell tolerance. Thus, altered CD72 expression may play a role during the development of systemic lupus erythematosus.