Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1968-1978, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39233427

RESUMEN

Pollination is one of the important ecosystem services related to sustainable development of human society. However, the population diversity and abundance of wild bees, important pollinators, have been significantly reduced by climate change, agricultural intensification, and landscape transformation. Re-establishment of pollinator habitat by planting nectar-producing plants is an important way to maintain pollination service. In this study, we investigated the status of wild bees and the traits of flowering plants in 22 apple orchards during flowering stage in Changping District, Beijing in 2019. We analyzed the response of wild bee diversity to the flowering plant richness, flower color richness, inflorescence type richness, flowering plant coverage, herbaceous layer coverage and different flower color coverage in apple orchards, aiming to provide guidance for the selection of nectar-producing plants to establish the habitat of wild bees. A total of 3517 wild bees were captured during the apple flowering season, representing 49 species, 13 genera, and 5 families. We identified 21 flowering plants species that shared a similar flo-wering period with apple, exhibiting a range of 5 colors and 9 inflorescence types. The Shannon diversity index, evenness index, and social bee richness of wild bee community were positively correlated with flowering plant richness. The total wild bee community richness, social bee richness, underground nesting bee richness were positively correlated with the richness of flowering plant color, but Halictidae bee abundance was negatively correlated with the richness of flowering plant color. The Shannon diversity index and evenness index of wild bee community were positively correlated with the richness of inflorescence types. Megachilidae bee richness was negative correlated with the white flower coverage. Megachilidae bee richness, social bee abundance, and ground nesting bee richness were positively correlated with the purple flower coverage. There was no significant correlation between wild bees and flowering plant richness, flower color richness, inflorescence type richness, flowering plant coverage, herbaceous layer coverage and different flower color coverage in other communities of different families, lifestyles and nesting types. Maintaining diverse ground flowering plants with various traits in orchards is important to improve the diversity of wild bees. In particular, increasing the coverage of purple flower during apple flowering period is helpful to promote the diversity of Megachilidae bee, social bees, and ground nesting bees.


Asunto(s)
Biodiversidad , Flores , Malus , Polinización , Abejas/fisiología , Abejas/crecimiento & desarrollo , Abejas/clasificación , Malus/crecimiento & desarrollo , Malus/clasificación , Animales , Flores/crecimiento & desarrollo , Ecosistema , China
2.
Insects ; 15(5)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38786904

RESUMEN

Spodoptera exempta, known as the black armyworm, has been extensively documented as an invasive agricultural pest prevalent across various crop planting regions globally. However, the potential geographical distribution and the threat it poses to host crops of remains unknown at present. Therefore, we used an optimized MaxEnt model based on 841 occurrence records and 19 bioclimatic variables to predict the potential suitable areas of S. exempta under current and future climatic conditions, and the overlap with wheat, rice, and maize planting areas was assessed. The optimized model was highly reliable in predicting potential suitable areas for this pest. The results showed that high-risk distribution areas for S. exempta were mainly in developing countries, including Latin America, central South America, central Africa, and southern Asia. Moreover, for the three major global food crops, S. exempta posed the greatest risk to maize planting areas (510.78 × 104 km2), followed by rice and wheat planting areas. Under future climate scenarios, global warming will limit the distribution of S. exempta. Overall, S. exempta had the strongest effect on global maize production areas and the least on global wheat planting areas. Our study offers a scientific basis for global prevention of S. exempta and protection of agricultural crops.

3.
Sci Total Environ ; 859(Pt 2): 160252, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36427731

RESUMEN

Invasive alien plants (IAPs) substantially affect the native biodiversity, agriculture, industry, and human health worldwide. Ambrosia (ragweed) species, which are major IAPs globally, produce a significant impact on human health and the natural environment. In particular, invasion of A. artemisiifolia, A. psilostachya, and A. trifida in non-native continents is more extensive and severe than that of other species. Here, we used biomod2 ensemble model based on environmental and species occurrence data to predict the potential geographical distribution, overlapping geographical distribution areas, and the ecological niche dynamics of these three ragweeds and further explored the environmental variables shaping the observed patterns to assess the impact of these IAPs on the natural environment and public health. The ecological niche has shifted in the invasive area compared with that in the native area, which increased the invasion risk of three Ambrosia species during the invasion process in the world. The potential geographical distribution and overlapping geographical distribution areas of the three Ambrosia species are primarily distributed in Asia, North America, and Europe, and are expected to increase under four representative concentration pathways in the 2050s. The centers of potential geographical distributions of the three Ambrosia species showed a tendency to shift poleward from the current time to the 2050s. Bioclimatic variables and the human influence index were more significant in shaping these patterns than other factors. In brief, climate change has facilitated the expansion of the geographical distribution and overlapping geographical distribution areas of the three Ambrosia species. Ecomanagement and cross-country management strategies are warranted to mitigate the future effects of the expansion of these ragweed species worldwide in the Anthropocene on the natural environment and public health.


Asunto(s)
Ambrosia , Cambio Climático , Humanos , Especies Introducidas , Ecosistema , Europa (Continente)
4.
Ecol Evol ; 13(1): e9708, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36620415

RESUMEN

Niche dynamics of invasive alien plants (IAPs) play pivotal roles in biological invasion. Ageratina adenophora-one of the most aggressive IAPs in China and some parts of the world-poses severe ecological and socioeconomic threats. However, the spatiotemporal niche dynamics of A. adenophora in China remain unknown, which we aimed to elucidate in the present study. China, Mexico; using a unifying framework, we reconstructed the climate niche dynamics of A. adenophora and applied the optimal MaxEnt model to predict its potential geographical distribution in China. Furthermore, we compared the heterogeneity of A. adenophora niche between Mexico (native) and China (invasive). We observed a low niche overlap between Mexico (native) and China (invasive). Specifically, the niche of A. adenophora in China has distinctly expanded compared to that in Mexico, enhancing the invasion risk of this IAP in the former country. In fact, the climatic niche of A. adenophora in Mexico is a subset of that in China. The potential geographical distribution of A. adenophora is concentrated in the tropical and subtropical zones of Southwest China, and its geographical distribution pattern in China is shaped by the combination of precipitation and temperature variables. The niche dynamics of A. adenophora follow the hypothesis of niche shift and conservatism. The present work provides a unifying framework for studies on the niche dynamics of other IAPs worldwide.

5.
Ecol Evol ; 10(23): 13122-13133, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304522

RESUMEN

Ambrosia artemisiifolia and Ambrosia trifida are two species of very harmful and invasive plants of the same genus. However, it remains unclear why A. artemisiifolia is more widely distributed than A. trifida worldwide. Distribution and abundance of these two species were surveyed and measured from 2010 to 2017 in the Yili Valley, Xinjiang, China. Soil temperature and humidity, main companion species, the biological characteristics in farmland ecotone, residential area, roadside and grassland, and water demand of the two species were determined and studied from 2017 to 2018. The area occupied by A. artemisiifolia in the Yili Valley was more extensive than that of A. trifida, while the abundance of A. artemisiifolia in grassland was less than that of A. trifida at eight years after invasion. The interspecific competitive ability of two species was stronger than those of companion species in farmland ecotone, residential, and roadside. In addition, A. trifida had greater interspecific competitive ability than other plant species in grassland. The seed size and seed weight of A. trifida were five times or eight times those of A. artemisiifolia. When comparing the changes under simulated annual precipitation of 840 mm versus 280 mm, the seed yield per m2 of A. trifida decreased from 50,185 to 19, while that of A. artemisiifolia decreased from 15,579 to 530.

6.
Ying Yong Sheng Tai Xue Bao ; 24(12): 3399-406, 2013 Dec.
Artículo en Zh | MEDLINE | ID: mdl-24697057

RESUMEN

The distribution characteristics of soil N/P ratio in alpine grassland ecosystem of Qinghai-Tibet Plateau were surveyed by field investigation and laboratory analysis. Horizontally, soil N/ P ratio was generally higher in west and lower in east in a manner of staggered patch distribution, with higher N/P ratios mainly centralized in the hinterland of northern part of Tibet Plateau and in the lake basin area of the northern foot of Himalayas. Significant differences in soil N/P ratio were observed among grassland types and natural transects. Vertically, the distribution of N/P ratio along the soil profile from aboveground to underground among different grass types could be categorized into five patterns, including low-high-low-high, low-high-low, low-high, high-low-high-low, and high-low-high. The N/P ratio showed a significant positive correlation with soil bulk density at 0-20 cm depth, soil water content at 20-30 cm depth, contents of soil available K and total nitrogen, respectively. However, it showed significant negative correlation with soil bulk density at 20-30 cm depth, contents of soil available P and total P, respectively.


Asunto(s)
Pradera , Nitrógeno/análisis , Fósforo/análisis , Suelo/química , China , Poaceae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA