Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biochim Biophys Acta ; 1860(4): 686-93, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26779594

RESUMEN

BACKGROUND: Nuclear reprogramming with pluripotency factors enables somatic cells to gain the properties of embryonic stem cells. Mitochondrial resetting and metabolic reprogramming are suggested to be key early events in the induction of human skin fibroblasts to induced pluripotent stem cells (iPSCs). SCOPE OF REVIEW: We review recent advances in the study of the molecular basis for mitochondrial resetting and metabolic reprogramming in the regulation of the formation of iPSCs. In particular, the recent progress in using iPSCs for mitochondrial disease modeling was discussed. MAJOR CONCLUSIONS: iPSCs rely on glycolysis rather than oxidative phosphorylation as a major supply of energy. Mitochondrial resetting and metabolic reprogramming thus play crucial roles in the process of generation of iPSCs from somatic cells. GENERAL SIGNIFICANCE: Neurons, myocytes, and cardiomyocytes are cells containing abundant mitochondria in the human body, which can be differentiated from iPSCs or trans-differentiated from fibroblasts. Generating these cells from iPSCs derived from skin fibroblasts of patients with mitochondrial diseases or by trans-differentiation with cell-specific transcription factors will provide valuable insights into the role of mitochondrial DNA heteroplasmy in mitochondrial disease modeling and serves as a novel platform for screening of drugs to treat patients with mitochondrial diseases.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Modelos Biológicos , Animales , Humanos , Células Madre Pluripotentes Inducidas/patología , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología
2.
Stem Cells ; 31(12): 2779-88, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23733376

RESUMEN

We previously demonstrated that metabolic switch and mitochondrial activation are required for osteogenic differentiation of human mesenchymal stem cells (hMSCs). However, stem cells in niches or transplanted into injured tissues constantly encounter hypoxic stress that hinders aerobic metabolism. Therefore, we investigated the effects of oxygen tension (1% vs. 21%) on metabolism and osteogenic differentiation of hMSCs. We found that hypoxia impaired osteogenic differentiation as indicated by attenuation of alkaline phosphatase activity and expression of osteogenic markers core binding factor a-1 and osteopontin. In addition, differentiation-induced mitochondrial activation was compromised as shown by the decrease in the expression of respiratory enzymes and oxygen consumption rate. On the contrary, anaerobic metabolism was augmented as revealed by the upregulation of glycolytic enzymes and increase of lactate production, rendering the cells to rely more on anaerobic glycolysis for energy supply. Moreover, administration of 2-deoxyglucose (a glycolytic inhibitor) but not antimycin A (a respiratory inhibitor) significantly decreased intracellular ATP levels of hMSCs differentiating under hypoxia. Treatment with cobalt chloride, a hypoxia-inducible factor-1α (HIF-1α) stabilizer, recapitulated the inhibitory effects of hypoxia, suggesting that HIF-1α is involved in the compromise of hMSCs differentiation. These results suggest that hypoxia inhibits metabolic switch and mitochondrial function and therefore suppresses osteogenic differentiation of hMSCs.


Asunto(s)
Hipoxia de la Célula/fisiología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Glucólisis , Humanos , Mitocondrias/fisiología , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba
3.
Stem Cells ; 31(12): 2607-19, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23940081

RESUMEN

Tumor cells have long been observed to share several biological characteristics with normal stem/progenitor cells; however, the oncogenic mechanisms underlying the lung stem/progenitor cell signaling remain elusive. Here, we report that SOX2, a self-renewal factor in lung stem/progenitor cells, is highly expressed in a subclass of lung cancer cells, the proliferation, survival, and chemoresistance of which are dependent on SOX2 signaling. Overexpression of SOX2 promotes oncogenic phenotypes in lung cancer cells; knockdown of SOX2 attenuated cell proliferation. We observed that SOX2 increased the expression of epidermal growth factor receptor (EGFR), and EGFR activation further upregulated SOX2 levels, forming a positive feedback loop. SOX2 expression promoted chemoresistance, and silencing of SOX2 perturbed mitochondrial function, causing marked apoptosis and autophagy. SOX2 induced BCL2L1, the ectopic expression of which rescued the effects of SOX2 silencing on apoptosis, autophagy, and mitochondrial function. SOX2 promoted tumor formation, along with increased cell proliferation in a xenograft mouse model. SOX2 expression is associated with poor prognosis in lung cancer patients; moreover, SOX2, EGFR, and BCL2L1 expression levels were significantly correlated in lung tumors. Our findings support the emerging role of SOX2 in cell proliferation and survival by eliciting oncogenic EGFR and BCL2L1 signaling with potential applications as a prognosis marker and a therapeutic target in lung cancer.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Factores de Transcripción SOXB1/metabolismo , Animales , Apoptosis/fisiología , Autofagia/fisiología , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Cisplatino/farmacología , Resistencia a Antineoplásicos , Receptores ErbB/biosíntesis , Receptores ErbB/genética , Receptores ErbB/metabolismo , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Xenoinjertos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Ratones , Paclitaxel/farmacología , Factores de Transcripción SOXB1/genética , Transducción de Señal , Análisis de Supervivencia , Proteína bcl-X/metabolismo
4.
Biochim Biophys Acta ; 1820(5): 571-6, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21983491

RESUMEN

BACKGROUND: The self-renewal ability and pluripotent differentiation potential of stem cells hold great promise for regenerative medicine. Many studies focus on the lineage-specific differentiation and expansion of stem cells, but little is known about the regulation of glycolysis and mitochondrial biogenesis and function during these processes. Recent studies have demonstrated a strong correlation between cellular metabolism and the pluripotency and differentiation potential of stem cells, which indicates the importance of bioenergetic function in the regulation of stem cell physiology. SCOPE OF REVIEW: We summarize recent findings in the control of stem cell competence through the regulation of bioenergetic function in embryonic, hematopoietic, mesenchymal, and induced pluripotent stem cells, and discuss the up-to-date understanding of the molecular mechanisms involved in these biological processes. MAJOR CONCLUSIONS: It is believed that the metabolic signatures are highly correlated with the stemness status (high glycolytic flux) and differentiation potential (mitochondrial function) of stem cells. Besides, mitochondrial rejuvenation has been observed to participate in the reprogramming process. GENERAL SIGNIFICANCE: Understanding the metabolic regulation of stem cells will have great value in the characterization and isolation of stem cells with better differentiation potential. It also provides novel strategies of metabolic manipulation to increase the efficiency of cellular reprogramming. This article is part of a Special Issue entitled Biochemistry of Mitochondria, Life and Intervention 2010.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Metabolismo Energético , Mitocondrias/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Humanos
5.
Biochim Biophys Acta ; 1800(3): 257-63, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19747960

RESUMEN

Stem cell research has received increasing attention due to their invaluable potentials in the clinical applications to cure degenerative diseases, genetic disorders and even cancers. A great number of studies have been conducted with an aim to elucidate the molecular mechanisms involved in the regulation of self-renewal of stem cells and the mysterious circuits guiding them to differentiate into all kinds of progenies that can replenish the cell pools. However, little effort has been made in studying the metabolic aspects of stem cells. Mitochondria play essential roles in mammalian cells in the generation of ATP, Ca(2+) homeostasis, compartmentalization of biosynthetic pathways and execution of apoptosis. Considering the metabolic roles of mitochondria, they must be also critical in stem cells. This review is primarily focused on the biogenesis and bioenergetic function of mitochondria in the differentiation process and metabolic features of stem cells. In addition, the involvement of reactive oxygen species and hypoxic signals in the regulation of stem cell pluripotency and differentiation is also discussed.


Asunto(s)
Mitocondrias/fisiología , Células Madre/citología , Adenosina Trifosfato/metabolismo , Animales , Diferenciación Celular , Hipoxia de la Célula/fisiología , ADN Mitocondrial/genética , Mamíferos , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/fisiología , Morfogénesis , Biogénesis de Organelos , Orgánulos/ultraestructura , Osteogénesis/fisiología , Consumo de Oxígeno , Células Madre/fisiología , Regulación hacia Arriba
6.
J Pineal Res ; 49(3): 222-38, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20626586

RESUMEN

The purpose of this study was to determine the critical time periods of melatonin treatment required to induce human mesenchymal stem cells (hAMSCs) into osteoblasts and to determine which osteogenic genes are involved in the process. The study design consisted of adding melatonin for different times (2, 5, 10, 14 or 21 days) toward the end of a 21-day treatment containing osteogenic (OS+) medium or at the beginning of the 21-day treatment and then withdrawn. The results show that a 21-day continuous melatonin treatment was required to induce both alkaline phosphatase (ALP) activity and calcium deposition and these effects were mediated through MT2Rs. Functional analysis revealed that peak ALP levels induced by melatonin were accompanied by attenuation of melatonin-mediated inhibition of forskolin-induced cAMP accumulation. Immunoprecipitation and western blot analyses, respectively, showed that MT2R/ß-arrestin scaffolds complexed to Gi, MEK1/2 and ERK1/2 formed in these differentiated hAMSCs (i.e., when ALP levels were highest) where ERK1/2 resided primarily in the cytosol. It is hypothesized that these complexes form to modulate the subcellular localization of ERK1/2 to affect osteogenic gene expression. Using real-time RT-PCR, chronic melatonin exposure induced the expression of osteogenic genes RUNX-2, osteocalcin and BMP-2, through MT2Rs. No melatonin-mediated changes in the mRNA expression of ALP, BMP-6 or in the oxidative enzymes MtTFA, PGC-1α, Polγ, NRF-1, PDH, PDK and LDH occurred. These data show that a continuous 21-day melatonin exposure is required to induce osteoblast differentiation from hAMSCs through the formation of MT2R/Gi/ß-arrestin/MEK/ERK1/2 complexes to induce osteogenesis.


Asunto(s)
Antioxidantes/farmacología , Diferenciación Celular/efectos de los fármacos , Melatonina/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Arrestinas/genética , Arrestinas/metabolismo , Proteína Morfogenética Ósea 6/genética , Proteína Morfogenética Ósea 6/metabolismo , Humanos , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/genética , MAP Quinasa Quinasa 2/metabolismo , Osteogénesis/genética , Receptor de Melatonina MT2/genética , Receptor de Melatonina MT2/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , beta-Arrestinas
7.
Gastroenterology ; 134(7): 2111-21, 2121.e1-3, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18455168

RESUMEN

BACKGROUND & AIMS: Liver transplantation is the primary treatment for various end-stage hepatic diseases but is hindered by the lack of donor organs and by complications associated with rejection and immunosuppression. There is increasing evidence to suggest the bone marrow is a transplantable source of hepatic progenitors. We previously reported that multipotent bone marrow-derived mesenchymal stem cells differentiate into functional hepatocyte-like cells with almost 100% induction frequency under defined conditions, suggesting the potential for clinical applications. The aim of this study was to critically analyze the various parameters governing the success of bone marrow-derived mesenchymal stem cell-based therapy for treatment of liver diseases. METHODS: Lethal fulminant hepatic failure in nonobese diabetic severe combined immunodeficient mice was induced by carbon tetrachloride gavage. Mesenchymal stem cell-derived hepatocytes and mesenchymal stem cells were then intrasplenically or intravenously transplanted at different doses. RESULTS: Both mesenchymal stem cell-derived hepatocytes and mesenchymal stem cells, transplanted by either intrasplenic or intravenous route, engrafted recipient liver, differentiated into functional hepatocytes, and rescued liver failure. Intravenous transplantation was more effective in rescuing liver failure than intrasplenic transplantation. Moreover, mesenchymal stem cells were more resistant to reactive oxygen species in vitro, reduced oxidative stress in recipient mice, and accelerated repopulation of hepatocytes after liver damage, suggesting a possible role for paracrine effects. CONCLUSIONS: Bone marrow-derived mesenchymal stem cells can effectively rescue experimental liver failure and contribute to liver regeneration and offer a potentially alternative therapy to organ transplantation for treatment of liver diseases.


Asunto(s)
Trasplante de Médula Ósea , Diferenciación Celular , Hepatocitos/trasplante , Fallo Hepático Agudo/cirugía , Regeneración Hepática , Hígado/cirugía , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Animales , Antioxidantes/metabolismo , Tetracloruro de Carbono , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Hígado/metabolismo , Hígado/patología , Hígado/fisiopatología , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/metabolismo , Fallo Hepático Agudo/fisiopatología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo
8.
Stem Cells ; 26(4): 960-8, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18218821

RESUMEN

The multidifferentiation ability of mesenchymal stem cells holds great promise for cell therapy. Numerous studies have focused on the establishment of differentiation protocols, whereas little attention has been paid to the metabolic changes during the differentiation process. Mitochondria, the powerhouse of mammalian cells, vary in their number and function in different cell types with different energy demands, but how these variations are associated with cell differentiation remains elusive. In this study, we investigated the changes of mitochondrial biogenesis and bioenergetic function using human mesenchymal stem cells (hMSCs) because of their well-defined differentiation potentials. Upon osteogenic induction, the copy number of mitochondrial DNA, protein subunits of the respiratory enzymes, oxygen consumption rate, and intracellular ATP content were increased, indicating the upregulation of aerobic mitochondrial metabolism. On the other hand, undifferentiated hMSCs showed higher levels of glycolytic enzymes and lactate production rate, suggesting that hMSCs rely more on glycolysis for energy supply in comparison with hMSC-differentiated osteoblasts. In addition, we observed a dramatic decrease of intracellular reactive oxygen species (ROS) as a consequence of upregulation of two antioxidant enzymes, manganese-dependent superoxide dismutase and catalase. Finally, we found that exogenous H(2)O(2) and mitochondrial inhibitors could retard the osteogenic differentiation. These findings suggested an energy production transition from glycolysis to oxidative phosphorylation in hMSCs upon osteogenic induction. Meanwhile, antioxidant enzymes were concurrently upregulated to prevent the accumulation of intracellular ROS. Together, our findings suggest that coordinated regulation of mitochondrial biogenesis and antioxidant enzymes occurs synergistically during osteogenic differentiation of hMSCs.


Asunto(s)
Antioxidantes/fisiología , Diferenciación Celular/fisiología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/enzimología , Mitocondrias/enzimología , Osteogénesis/fisiología , Adulto , Células Cultivadas , Humanos , Persona de Mediana Edad , Mitocondrias/genética , Especies Reactivas de Oxígeno/metabolismo
9.
J Biomed Opt ; 13(5): 050505, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19021377

RESUMEN

The metabolic changes of human mesenchymal stem cells (hMSCs) during osteogenic differentiation were accessed by reduced nicotinamide adenine dinucleotide (NADH) fluorescence lifetime. An increase in mean fluorescence lifetime and decrease in the ratio between free NADH and protein-bound NADH correlated with our previously reported increase in the adenosine triphosphate (ATP) level of hMSCs during differentiation. These findings suggest that NADH fluorescence lifetime may serve as a new optical biomarker for noninvasive selection of stem cells from differentiated progenies.


Asunto(s)
Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Microscopía Fluorescente/métodos , NAD/análisis , Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis/fisiología , Espectrometría de Fluorescencia/métodos , Células Cultivadas , Humanos , Oxidación-Reducción
10.
J Biomed Opt ; 13(5): 054011, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19021391

RESUMEN

Direct monitoring of cell death (i.e., apoptosis and necrosis) during or shortly after treatment is desirable in all cancer therapies to determine the outcome. Further differentiation of apoptosis from necrosis is crucial to optimize apoptosis-favored treatment protocols. We investigated the potential modality of using tissue intrinsic fluorescence chromophore, reduced nicotinamide adenine dinucleotide (NADH), for cell death detection. We imaged the fluorescence lifetime changes of NADH before and after staurosporine (STS)-induced mitochondria-mediated apoptosis and hydrogen peroxide (H2O2)-induced necrosis, respectively, using two-photon fluorescence lifetime imaging in live HeLa cells and 143B osteosarcoma. Time-lapsed lifetime images were acquired at the same site of cells. In untreated cells, the average lifetime of NADH fluorescence was approximately 1.3 ns. The NADH average fluorescence lifetime increased to approximately 3.5 ns within 15 min after 1 microM STS treatment and gradually decreased thereafter. The NADH fluorescence intensity increased within 15 min. In contrast, no significant dynamic lifetime change was found in cells treated with 1 mM H2O2. Our findings suggest that monitoring the NADH fluorescence lifetime may be a valuable noninvasive tool to detect apoptosis and distinguish apoptosis from necrosis for the optimization of apoptosis-favored treatment protocols and other clinical applications.


Asunto(s)
Apoptosis/fisiología , NAD/análisis , Necrosis/metabolismo , Osteosarcoma/metabolismo , Osteosarcoma/patología , Espectrometría de Fluorescencia/métodos , Línea Celular Tumoral , Células HeLa , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
11.
Stem Cell Res ; 30: 201-205, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29960149

RESUMEN

MERRF syndrome is predominantly caused by A8344G mutation in the mitochondrial DNA (mtDNA), affecting MT-TK gene, which impairs the mitochondrial electron transport chain function. Here, we report the generation of two isogenic induced pluripotent stem cell (iPSC) lines, TVGH-iPSC-MRF-Mlow and TVGH-iPSC-MRF-Mhigh, from the skin fibroblasts of a female MERRF patient harboring mtDNA A8344G mutation by using retrovirus transduction system. Both cell lines share the same genetic background except containing different proportions of mtDNA with the A8344G mutation. Both cell lines exhibited the pluripotency and capacity to differentiate into three germ layers.


Asunto(s)
ADN Mitocondrial/genética , Células Madre Pluripotentes Inducidas/metabolismo , Síndrome MERRF/genética , Adolescente , Animales , Femenino , Humanos , Ratones , Mutación
12.
Sci Rep ; 6: 23661, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27025901

RESUMEN

Myoclonus epilepsy associated with ragged-red fibers (MERRF) is a mitochondrial disorder characterized by myoclonus epilepsy, generalized seizures, ataxia and myopathy. MERRF syndrome is primarily due to an A to G mutation at mtDNA 8344 that disrupts the mitochondrial gene for tRNA(Lys). However, the detailed mechanism by which this tRNA(Lys) mutation causes mitochondrial dysfunction in cardiomyocytes or neurons remains unclear. In this study, we generated human induced pluripotent stem cells (hiPSCs) that carry the A8344G genetic mutation from patients with MERRF syndrome. Compared with mutation-free isogenic hiPSCs, MERRF-specific hiPSCs (MERRF-hiPSCs) exhibited reduced oxygen consumption, elevated reactive oxygen species (ROS) production, reduced growth, and fragmented mitochondrial morphology. We sought to investigate the induction ability and mitochondrial function of cardiomyocyte-like cells differentiated from MERRF-hiPSCs. Our data demonstrate that that cardiomyocyte-like cells (MERRF-CMs) or neural progenitor cells (MERRF-NPCs) differentiated from MERRF-iPSCs also exhibited increased ROS levels and altered antioxidant gene expression. Furthermore, MERRF-CMs or -NPCs contained fragmented mitochondria, as evidenced by MitoTracker Red staining and transmission electron microscopy. Taken together, these findings showed that MERRF-hiPSCs and MERRF-CM or -NPC harboring the A8344G genetic mutation displayed contained mitochondria with an abnormal ultrastructure, produced increased ROS levels, and expressed upregulated antioxidant genes.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Síndrome MERRF/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Adolescente , Desdiferenciación Celular , Diferenciación Celular , Células Cultivadas , ADN Mitocondrial/genética , Femenino , Humanos , Células Madre Pluripotentes Inducidas/patología , Síndrome MERRF/patología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Forma de los Orgánulos , Consumo de Oxígeno , Mutación Puntual
13.
FEBS Lett ; 583(4): 691-6, 2009 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-19166847

RESUMEN

The helicase domain of dengue virus NS3 protein (DENV NS3H) contains RNA-stimulated nucleoside triphosphatase (NTPase), ATPase/helicase, and RNA 5'-triphosphatase (RTPase) activities that are essential for viral RNA replication and capping. Here, we show that DENV NS3H unwinds 3'-tailed duplex with an RNA but not a DNA loading strand, and the helicase activity is poorly processive. The substrate of the divalent cation-dependent RTPase activity is not restricted to viral RNA 5'-terminus, a protruding 5'-terminus made the RNA 5'-triphosphate readily accessible to DENV NS3H. DENV NS3H preferentially binds RNA to DNA, and the functional interaction with RNA is sensitive to ionic strength.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Virus del Dengue/metabolismo , Nucleósido-Trifosfatasa/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Ácido Anhídrido Hidrolasas/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Clonación Molecular , Virus del Dengue/genética , Escherichia coli/genética , Histidina/química , Datos de Secuencia Molecular , Mutación , Nucleósido-Trifosfatasa/genética , Estructura Terciaria de Proteína , ARN Helicasas/química , ARN Helicasas/clasificación , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/clasificación , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Serotipificación , Proteínas no Estructurales Virales/clasificación , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA