Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Curr Atheroscler Rep ; 26(7): 317-329, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38753254

RESUMEN

PURPOSE OF REVIEW: Low-density lipoprotein (LDL) poses a risk for atherosclerotic cardiovascular disease (ASCVD). As LDL comprises various subtypes differing in charge, density, and size, understanding their specific impact on ASCVD is crucial. Two highly atherogenic LDL subtypes-electronegative LDL (L5) and Lp(a)-induce vascular cell apoptosis and atherosclerotic changes independent of plasma cholesterol levels, and their mechanisms warrant further investigation. Here, we have compared the roles of L5 and Lp(a) in the development of ASCVD. RECENT FINDINGS: Lp(a) tends to accumulate in artery walls, promoting plaque formation and potentially triggering atherosclerosis progression through prothrombotic or antifibrinolytic effects. High Lp(a) levels correlate with calcific aortic stenosis and atherothrombosis risk. L5 can induce endothelial cell apoptosis and increase vascular permeability, inflammation, and atherogenesis, playing a key role in initiating atherosclerosis. Elevated L5 levels in certain high-risk populations may serve as a distinctive predictor of ASCVD. L5 and Lp(a) are both atherogenic lipoproteins contributing to ASCVD through distinct mechanisms. Lp(a) has garnered attention, but equal consideration should be given to L5.


Asunto(s)
Aterosclerosis , Lipoproteína(a) , Humanos , Lipoproteína(a)/sangre , Lipoproteína(a)/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/sangre , Lipoproteínas LDL/sangre , Lipoproteínas LDL/metabolismo , Apoptosis , Animales
2.
Clin Exp Rheumatol ; 41(5): 1120-1128, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36200949

RESUMEN

OBJECTIVES: Although 1H-nuclear magnetic resonance (NMR)-based lipid/metabolomics has been used to detect atherosclerosis, data regarding lipid/metabolomic signature in rheumatoid arthritis (RA)-related atherosclerosis are scarce. We aimed to identify the distinct lipid/metabolomic profiling and develop a prediction score model for RA patients with subclinical atherosclerosis (SA). METHODS: Serum levels of lipid metabolites were determined using 1H-NMR-based lipid/metabolomics in 65 RA patients and 12 healthy controls (HCs). The occurrence of SA was defined as the presence of carotid plaques revealed in ultrasound images. RESULTS: Compared with HC, RA patients had significantly higher levels of phenylalanine and glycoprotein acetyls (GlycA) and lower levels of leucine and isoleucine. RA patients with SA had significantly higher levels of phenylalanine, creatinine, and glycolysis_total and lower levels of total lipid in HDL(HDL_L) than RA patients without SA. The Lasso logistic regression analysis revealed that age, creatinine, HDL_L, and glycolysis_total were significant predictors for the presence of SA. The prediction scoring algorithm was built as ( -0.657 + 0.011*Age + 0.004*Creatinine -0.120*HDL_L + 0.056*glycolysis-related measures), with AUC 0.90, sensitivity 83.3%, and specificity 87.2%. Serum phenylalanine levels were significantly decreased, and the levels of HDL_L and HDL_Particle were significantly increased in 20 RA patients, paralleling the decrease in disease activity score for 28-joints. CONCLUSIONS: With 1H-NMR-based lipid/metabolomics, distinct profiling of lipid metabolites was identified between RA patients and HC or between RA patients with and without SA. We further developed a scoring model based on lipid/metabolomics profiling for predicting RA-associated SA.


Asunto(s)
Artritis Reumatoide , Aterosclerosis , Humanos , Recién Nacido , Creatinina , Artritis Reumatoide/complicaciones , Artritis Reumatoide/diagnóstico , Metabolómica/métodos , Aterosclerosis/diagnóstico , Aterosclerosis/etiología , Lípidos
3.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37445823

RESUMEN

Rheumatoid arthritis (RA), a chronic inflammatory disease, carries a significant burden of atherosclerotic cardiovascular diseases (ASCVD). With their heterogeneous composition, high-density lipoprotein (HDL) particles have varied athero-protective properties, and some may even increase ASCVD risk. In this prospective and cross-sectional study, we aimed to examine the relationship between HDL sizes/metabolites and inflammation in RA. Using 1H-NMR-based lipid/metabolomics, differential HDL-related metabolites were identified between RA patients and healthy control (HC) subjects and between RA patients with and without anti-citrullinated peptide antibodies (ACPA). The correlation between the discriminative HDL-related metabolites and C-reactive protein (CRP) was evaluated in RA patients. RA patients demonstrated higher particle number, lipids, cholesterol, cholesterol ester, free cholesterol, and phospholipids in large/very large-sized HDLs. ACPA-positive patients had higher L-HDL-C and L-HDL-CE but lower small-/medium-sized HDL-TG levels than ACPA-negative patients. An inverse correlation was found between CRP levels and small-sized HDLs. Janus kinase inhibitor treatment was associated with increased serum small-sized HDL-related metabolites and decreased CRP levels. We are the first to reveal the significant associations between RA inflammation and HDL sizes/metabolites. A potential link between ACPA positivity and changes in serum levels of HDL-related metabolites was also observed in RA patients.


Asunto(s)
Artritis Reumatoide , Inflamación , Humanos , HDL-Colesterol , Estudios Transversales , Estudios Prospectivos , Inflamación/complicaciones , Artritis Reumatoide/metabolismo , Colesterol , Lipoproteínas HDL
4.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203304

RESUMEN

This study explores the synergistic impact of Programmed Death Ligand 1 (PD-L1) and Protein Kinase B (Akt) overexpression in adipose-derived mesenchymal stem cells (AdMSCs) for ameliorating cardiac dysfunction after myocardial infarction (MI). Post-MI adult Wistar rats were allocated into four groups: sham, MI, ADMSC treatment, and ADMSCs overexpressed with PD-L1 and Akt (AdMSC-PDL1-Akt) treatment. MI was induced via left anterior descending coronary artery ligation, followed by intramyocardial AdMSC injections. Over four weeks, cardiac functionality and structural integrity were assessed using pressure-volume analysis, infarct size measurement, and immunohistochemistry. AdMSC-PDL1-Akt exhibited enhanced resistance to reactive oxygen species (ROS) in vitro and ameliorated MI-induced contractile dysfunction in vivo by improving the end-systolic pressure-volume relationship and preload-recruitable stroke work, together with attenuating infarct size. Molecular analyses revealed substantial mitigation in caspase3 and nuclear factor-κB upregulation in MI hearts within the AdMSC-PDL1-Akt group. Mechanistically, AdMSC-PDL1-Akt fostered the differentiation of normal T cells into CD25+ regulatory T cells in vitro, aligning with in vivo upregulation of CD25 in AdMSC-PDL1-Akt-treated rats. Collectively, PD-L1 and Akt overexpression in AdMSCs bolsters resistance to ROS-mediated apoptosis in vitro and enhances myocardial protective efficacy against MI-induced dysfunction, potentially via T-cell modulation, underscoring a promising therapeutic strategy for myocardial ischemic injuries.


Asunto(s)
Lesiones Cardíacas , Células Madre Mesenquimatosas , Infarto del Miocardio , Animales , Ratas , Antígeno B7-H1 , Infarto del Miocardio/terapia , Proteínas Proto-Oncogénicas c-akt , Ratas Wistar , Especies Reactivas de Oxígeno
5.
Eur Heart J ; 42(18): 1797-1807, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-36282110

RESUMEN

Cardiovascular diseases (CVDs), specifically lipid-driven atherosclerotic CVDs, remain the number one cause of death worldwide. The lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1), a scavenger receptor that promotes endothelial dysfunction by inducing pro-atherogenic signalling and plaque formation via the endothelial uptake of oxidized LDL (oxLDL) and electronegative LDL, contributes to the initiation, progression, and destabilization of atheromatous plaques, eventually leading to the development of myocardial infarction and certain forms of stroke. In addition to its expression in endothelial cells, LOX-1 is expressed in macrophages, cardiomyocytes, fibroblasts, dendritic cells, lymphocytes, and neutrophils, further implicating this receptor in multiple aspects of atherosclerotic plaque formation. LOX-1 holds promise as a novel diagnostic and therapeutic target for certain CVDs; therefore, understanding the molecular structure and function of LOX-1 is of critical importance. In this review, we highlight the latest scientific findings related to LOX-1, its ligands, and their roles in the broad spectrum of CVDs. We describe recent findings from basic research, delineate their translational value, and discuss the potential of LOX-1 as a novel target for the prevention, diagnosis, and treatment of related CVDs.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Placa Aterosclerótica , Humanos , Receptores Depuradores de Clase E/metabolismo , Células Endoteliales/metabolismo , Ligandos , Aterosclerosis/metabolismo , Lipoproteínas LDL/metabolismo , Receptores Depuradores
6.
Eur Heart J ; 42(18): 1797-1807, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33159784

RESUMEN

Cardiovascular diseases (CVDs), specifically lipid-driven atherosclerotic CVDs, remain the number one cause of death worldwide. The lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1), a scavenger receptor that promotes endothelial dysfunction by inducing pro-atherogenic signalling and plaque formation via the endothelial uptake of oxidized LDL (oxLDL) and electronegative LDL, contributes to the initiation, progression, and destabilization of atheromatous plaques, eventually leading to the development of myocardial infarction and certain forms of stroke. In addition to its expression in endothelial cells, LOX-1 is expressed in macrophages, cardiomyocytes, fibroblasts, dendritic cells, lymphocytes, and neutrophils, further implicating this receptor in multiple aspects of atherosclerotic plaque formation. LOX-1 holds promise as a novel diagnostic and therapeutic target for certain CVDs; therefore, understanding the molecular structure and function of LOX-1 is of critical importance. In this review, we highlight the latest scientific findings related to LOX-1, its ligands, and their roles in the broad spectrum of CVDs. We describe recent findings from basic research, delineate their translational value, and discuss the potential of LOX-1 as a novel target for the prevention, diagnosis, and treatment of related CVDs.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Células Endoteliales , Humanos , Lipoproteínas LDL , Receptores de LDL , Receptores Depuradores de Clase E
7.
J Lipid Res ; 62: 100001, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33410750

RESUMEN

Adiponectin, an adipocyte-derived protein, has antiatherogenic and antidiabetic effects, but how it confers the atherogenic effects is not well known. To study the antiatherogenic mechanisms of adiponectin, we examined whether it interacts with atherogenic low density lipoprotein (LDL) to attenuate LDL's atherogenicity. L5, the most electronegative subfraction of LDL, induces atherogenic responses similarly to copper-oxidized LDL (oxLDL). Unlike the native LDL endocytosed via the LDL receptor, L5 and oxLDL are internalized by cells via the lectin-like oxidized LDL receptor-1 (LOX-1). Using enzyme-linked immunosorbent assays (ELISAs), we showed that adiponectin preferentially bound oxLDL but not native LDL. In Chinese hamster ovary (CHO) cells transfected with the LOX-1 or LDL receptor, adiponectin selectively inhibited the uptake of oxLDL but not of native LDL, respectively. Furthermore, adiponectin suppressed the internalization of oxLDL in human coronary artery endothelial cells (HCAECs) and THP-1-derived macrophages. Western blot analysis of human plasma showed that adiponectin was abundant in L5 but not in L1, the least electronegative subfraction of LDL. Sandwich ELISAs with anti-adiponectin and anti-apolipoprotein B antibodies confirmed the binding of adiponectin to L5 and oxLDL. In LOX-1-expressing CHO cells, adiponectin inhibited cellular responses to oxLDL and L5, including nuclear factor-κB activation and extracellular signal-regulated kinas phosphorylation. In HCAECs, adiponectin inhibited oxLDL-induced endothelin-1 secretion and extracellular signal-regulated kinase phosphorylation. Conversely, oxLDL suppressed the adiponectin-induced activation of adenosine monophosphate-activated protein kinase in COS-7 cells expressing adiponectin receptor AdipoR1. Our findings suggest that adiponectin binds and inactivates atherogenic LDL, providing novel insight into the antiatherogenic mechanisms of adiponectin.


Asunto(s)
Adiponectina
8.
FASEB J ; 34(7): 9802-9813, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32501643

RESUMEN

Low-density lipoprotein (LDL) is heterogeneous, composed of particles with variable atherogenicity. Electronegative L5 LDL exhibits atherogenic properties in vitro and in vivo, and its levels are elevated in patients with increased cardiovascular risk. Apolipoprotein E (APOE) content is increased in L5, but what role APOE plays in L5 function remains unclear. Here, we characterized the contributions of APOE posttranslational modification to L5's atherogenicity. Using two-dimensional electrophoresis and liquid chromatography-mass spectrometry, we studied APOE's posttranslational modification in L5 from human plasma. APOE structures with various glycan residues were predicted. Molecular docking and molecular dynamics simulation were performed to examine the functional changes of APOE resulting from glycosylation. We also examined the effects of L5 deglycosylation on endothelial cell apoptosis. The glycan sequence N-acetylgalactosamine, galactose, and sialic acid was consistently expressed on serine 94, threonine 194, and threonine 289 of APOE in L5 and was predicted to contribute to L5's negative surface charge and hydrophilicity. The electrostatic force between the negatively charged sialic acid-containing glycan residue of APOE and positively charged amino acids at the receptor-binding area suggested that glycosylation interferes with APOE's attraction to receptors, lipid-binding ability, and lipid transportation and metabolism functions. Importantly, L5 containing glycosylated APOE induced apoptosis in cultured endothelial cells through lectin-like oxidized LDL receptor-1 (LOX-1) signaling, and glycosylation removal from L5 attenuated L5-induced apoptosis. APOE glycosylation may contribute to the atherogenicity of L5 and be a useful biomarker for rapidly quantifying L5.


Asunto(s)
Apolipoproteínas E/química , Aterosclerosis/patología , Células Endoteliales/patología , Lipoproteínas LDL/efectos adversos , Síndrome Metabólico/fisiopatología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Apolipoproteínas E/metabolismo , Apoptosis , Aterosclerosis/inducido químicamente , Estudios de Casos y Controles , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Glicosilación , Humanos , Simulación del Acoplamiento Molecular , Conformación Proteica , Transducción de Señal
9.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34768851

RESUMEN

Although the heterogeneity of high-density lipoprotein-cholesterol (HDL-c) composition is associated with atherosclerotic cardiovascular risk, the link between electronegative subfractions of HDL-c and atherosclerosis in rheumatoid arthritis (RA) remains unknown. We examined the association of the percentage of the most electronegative subfraction of HDL-c (H5%) and RA-related atherosclerosis. Using anion-exchange purification/fast-protein liquid chromatography, we demonstrated significantly higher H5% in patients (median, 7.2%) than HC (2.8%, p < 0.005). Multivariable regression analysis revealed H5% as a significant predictor for subclinical atherosclerosis. We subsequently explored atherogenic role of H5 using cell-based assay. The results showed significantly higher levels of IL-1ß and IL-8 mRNA in H5-treated (mean ± SD, 4.45 ± 1.22 folds, 6.02 ± 1.43-folds, respectively) than H1-treated monocytes (0.89 ± 0.18-folds, 1.03 ± 0.26-folds, respectively, both p < 0.001). In macrophages, H5 upregulated the mRNA and protein expression of IL-1ß and IL-8 in a dose-dependent manner, and their expression levels were significantly higher than H1-treated macrophages (all p < 0.001). H5 induced more foam cell formation compared with H1-treated macrophages (p < 0.005). In addition, H5 has significantly lower cholesterol efflux capacity than H1 (p < 0.005). The results of nanoLC-MS/MS approach reveal that the best discriminator between high-H5% and normal-H5% is Apo(a), the main constituent of Lp(a). Moreover, Lp(a) level is a significant predictor for high-H5%. These observations suggest that H5 is involved in RA-related atherosclerosis.


Asunto(s)
Artritis Reumatoide/patología , Aterosclerosis/patología , HDL-Colesterol/sangre , HDL-Colesterol/química , Lipoproteína(a)/sangre , Adulto , Línea Celular Tumoral , Cromatografía Liquida , Femenino , Células Espumosas/metabolismo , Humanos , Interleucina-1beta/biosíntesis , Interleucina-1beta/genética , Interleucina-8/biosíntesis , Interleucina-8/genética , Macrófagos/metabolismo , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Proyectos Piloto , ARN Mensajero/análisis , Células THP-1
10.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34445623

RESUMEN

Human breast milk lipids have major beneficial effects: they promote infant early brain development, growth and health. To identify the relationship between human breast milk lipids and infant neurodevelopment, multivariate analyses that combined lipidomics and psychological Bayley-III scales evaluation were utilized. We identified that 9,12-octadecadiynoic acid has a significantly positive correlation with infant adaptive behavioral development, which is a crucial neurodevelopment to manage risk from environmental stress. To further clarify the biological function of 9,12-octadecadiynoic acid in regulating neurodevelopment, Caenorhabditis elegans (C. elegans) was used as a model to investigate the effect of 9,12-octadecadiynoic acid on neurobehavioral development. Supplementation with 9,12-octadecadiynoic acid from the L1 to L4 stage in larvae affected locomotive behaviors and foraging ability that were not socially interactive, implying that 9,12-octadecadiynoic acid is involved in regulating the serotonergic neuronal ability. We found that supplementary 0.1 µM 9,12-octadecadiynoic acid accelerated the locomotive ability and foraging ability via increasing the expression of serotonin transporter mod-1. Antioxidant defense genes, sod-1, sod-3 and cyp-35A2 are involved in 9,12-octadecadiynoic acid-induced motor neuronal activity. Nevertheless, supplementary 9,12-octadecadiynoic acid at concentrations above 1 µM significantly attenuated locomotive behaviors, foraging ability, serotonin synthesis, serotonin-related gene expressions and stress-related gene expression, resulting in the decreased longevity of worms in the experiment. In conclusion, our study demonstrates the biological function of 9,12-octadecadiynoic acid in governing adaptive behavioral development.


Asunto(s)
Conducta Animal/efectos de los fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Larva/efectos de los fármacos , Ácido Linoleico/farmacología , Sistema Nervioso/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Larva/crecimiento & desarrollo , Sistema Nervioso/crecimiento & desarrollo
11.
Ann Rheum Dis ; 79(12): 1644-1656, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32907805

RESUMEN

OBJECTIVES: Fibromyalgia is commonly considered a stress-related chronic pain disorder, and daily stressors are known triggers. However, the relation between stress and pain development remains poorly defined by clinical approaches. Also, the aetiology remains largely unknown. METHODS: We used a newly developed mouse model and lipidomic approaches to probe the causation and explore the biological plausibility for how perceived stress translates into chronic non-inflammatory pain. Clinical and lipidomic investigations of fibromyalgia were conducted for human validation. RESULTS: Using non-painful sound stimuli as psychological stressors, we demonstrated that mice developed long-lasting non-inflammatory hyperalgesia after repeated and intermittent sound stress exposure. Elevated serum malondialdehyde level in stressed mice indicated excessive oxidative stress and lipid oxidative damage. Lipidomics revealed upregulation of lysophosphatidylcholine 16:0 (LPC16:0), a product of lipid oxidisation, in stressed mice. Intramuscular LPC16:0 injection triggered nociceptive responses and a hyperalgesic priming-like effect that caused long-lasting hypersensitivity. Pharmacological or genetic inhibition of acid-sensing ion channel 3 impeded the development of LPC16:0-induced chronic hyperalgesia. Darapladib and antioxidants could effectively alleviate the stress-induced hyperalgesia by inhibiting LPC16:0 synthesis. Clinical investigations showed that excessive oxidative stress and LPC16:0 expression also exist in patients with fibromyalgia. Moreover, LPC16:0 expression was correlated with pain symptoms in patients with high oxidative stress and disease severity. CONCLUSIONS: Our study provides experimental evidence for the causal effect of psychological stressors on chronic pain development. The findings identify a possible pathophysiological mechanism of stress-induced chronic non-inflammatory pain at molecular, behavioural and clinical levels that might indicate a new therapeutic approach for fibromyalgia.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Fibromialgia/metabolismo , Fibromialgia/psicología , Lisofosfatidilcolinas/metabolismo , Estrés Psicológico/metabolismo , Animales , Dolor Crónico/metabolismo , Dolor Crónico/psicología , Femenino , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/psicología , Lipidómica , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/fisiología , Estrés Psicológico/complicaciones
12.
Prostaglandins Other Lipid Mediat ; 151: 106478, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32711129

RESUMEN

Platelet-activating factor (PAF), a bioactive ether phospholipid with significant pro-inflammatory properties, was identified almost half a century ago. Despite extensive study of this autocoid, therapeutic strategies for targeting its signaling components have not been successful, including the recent clinical trials with darapladib, a drug that targets plasma PAF-acetylhydrolase (PAF-AH). We recently provided experimental evidence that the previously unrecognized acyl analog of PAF, which is concomitantly produced along with PAF during biosynthesis, dampens PAF signaling by acting both as a sacrificial substrate for PAF-AH and probably as an endogenous PAF-receptor antagonist/partial agonist. If this is the scenario in vivo, PAF-AH needs to catalyze the selective hydrolysis of alkyl-PAF and not acyl-PAF. Accordingly, different approaches are needed for treating inflammatory diseases in which PAF signaling is implicated. The interplay between acyl-PAF, alkyl-PAF, PAF-AH, and PAF-R is complex, and the outcome of this interplay has not been previously appreciated. In this review, we discuss this interaction based on our recent findings. It is very likely that the relative abundance of acyl and alkyl-PAF and their interactions with PAF-R in the presence of their hydrolyzing enzyme PAF-AH may exert a modulatory effect on PAF signaling during inflammation.


Asunto(s)
Factor de Activación Plaquetaria/análogos & derivados , Factor de Activación Plaquetaria/farmacología , Transducción de Señal/efectos de los fármacos , Acilación , Alquilación , Humanos , Inflamación/patología
13.
Lipids Health Dis ; 19(1): 189, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825832

RESUMEN

BACKGROUND: Cardiac Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation plays a critical role in cardiomyocyte (CM) apoptosis and arrhythmia. Functional ATP-sensitive potassium (KATP) channels are essential for cardiac protection during ischemia. In cultured CMs, L5 low-density lipoprotein (LDL) induces apoptosis and QTc prolongation. L5 is a highly electronegative and atherogenic aberrant form of LDL, and its levels are significantly higher in patients with cardiovascular-related diseases. Here, the role of L5 in cardiac injury was studied by evaluating the effects of L5 on CaMKII activity and KATP channel physiology in CMs. METHODS: Cultured neonatal rat CMs (NRCMs) were treated with a moderate concentration (ie, 7.5 µg/mL) of L5 or L1 (the least electronegative LDL subfraction). NRCMs were examined for apoptosis and viability, CaMKII activity, and the expression of phosphorylated CaMKIIδ and NOX2/gp91phox. The function of KATP and action potentials (APs) was analyzed by using the patch-clamp technique. RESULTS: In NRCMs, L5 but not L1 significantly induced cell apoptosis and reduced cell viability. Furthermore, L5 decreased Kir6.2 expression by more than 50%. Patch-clamp analysis showed that L5 reduced the KATP current (IKATP) density induced by pinacidil, a KATP opener. The partial recovery of the inward potassium current during pinacidil washout was susceptible to subsequent inhibition by the IKATP blocker glibenclamide. Suppression of IKATP by L5 significantly prolonged the AP duration. L5 also significantly increased the activity of CaMKII, the phosphorylation of CaMKIIδ, and the expression of NOX2/gp91phox. L5-induced apoptosis was prevented by the addition of the CaMKII inhibitor KN93 and the reactive oxygen species scavenger Mn (III)TBAP. CONCLUSIONS: L5 but not L1 induces CM damage through the activation of the CaMKII pathway and increases arrhythmogenicity in CMs by modulating the AP duration. These results help to explain the harmful effects of L5 in cardiovascular-related disease.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Canales KATP/metabolismo , Miocitos Cardíacos/metabolismo , Potenciales de Acción/fisiología , Animales , Apoptosis/fisiología , Western Blotting , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Supervivencia Celular/fisiología , Electrofisiología , Lipoproteínas LDL/metabolismo , Técnicas de Placa-Clamp , Fosforilación/fisiología , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología
14.
Int J Mol Sci ; 21(16)2020 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-32824307

RESUMEN

L5, the most negatively charged subfraction of low-density lipoprotein (LDL), is implicated in atherogenesis, but the pathogenic association is relatively unexplored in patients with rheumatoid arthritis (RA). We examined the role of L5 LDL in macrophage foam cell formation and the association of L5 with CD11c expression in THP-1 cells and RA patients. Using quantitative real-time PCR, we determined mRNA expression levels of ITGAX, the gene for CD11c, a marker associated with vascular plaque formation and M1 macrophages in atherogenesis, in 93 RA patients. We also examined CD11c expression on THP-1 cells treated with L5 by flow cytometry analysis and the plasma levels of inflammatory mediators using a magnetic bead array. We found a dose-dependent upregulation of foam cell formation of macrophages after L5 treatment (mean ± SEM, 12.05 ± 2.35% in L5 (10 µg/mL); 50.13 ± 3.9% in L5 (25 µg/mL); 90.69 ± 1.82% in L5 (50 µg/mL), p < 0.01). Significantly higher levels of CD11c expression were observed in 30 patients with a high percentage of L5 in LDL (L5%) (0.0752 ± 0.0139-fold) compared to 63 patients with normal L5% (0.0446 ± 0.0054-fold, p < 0.05). CD11c expression levels were increased in the L5-treated group (30.00 ± 3.13% in L5 (10 µg/mL); 41.46 ± 2.77% in L5 (50 µg/mL), p < 0.05) and were positively correlated with plasma levels of interleukin (IL)-6 and IL-8. L5 augmented the expression of IL-6, IL-8, and tumor necrosis factor-α (TNF-α) on monocytes and macrophages. Our findings suggest that L5 may promote atherogenesis by augmenting macrophage foam cell formation, upregulating CD11c expression, and enhancing the expression levels of atherosclerosis-related mediators.


Asunto(s)
Artritis Reumatoide/metabolismo , Antígeno CD11c/genética , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Anciano , Artritis Reumatoide/patología , Antígeno CD11c/metabolismo , Femenino , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , Persona de Mediana Edad , Células THP-1 , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
15.
Int J Mol Sci ; 20(5)2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30845751

RESUMEN

Lysophosphatidylcholine (LPC) is increasingly recognized as a key marker/factor positively associated with cardiovascular and neurodegenerative diseases. However, findings from recent clinical lipidomic studies of LPC have been controversial. A key issue is the complexity of the enzymatic cascade involved in LPC metabolism. Here, we address the coordination of these enzymes and the derangement that may disrupt LPC homeostasis, leading to metabolic disorders. LPC is mainly derived from the turnover of phosphatidylcholine (PC) in the circulation by phospholipase A2 (PLA2). In the presence of Acyl-CoA, lysophosphatidylcholine acyltransferase (LPCAT) converts LPC to PC, which rapidly gets recycled by the Lands cycle. However, overexpression or enhanced activity of PLA2 increases the LPC content in modified low-density lipoprotein (LDL) and oxidized LDL, which play significant roles in the development of atherosclerotic plaques and endothelial dysfunction. The intracellular enzyme LPCAT cannot directly remove LPC from circulation. Hydrolysis of LPC by autotaxin, an enzyme with lysophospholipase D activity, generates lysophosphatidic acid, which is highly associated with cancers. Although enzymes with lysophospholipase A1 activity could theoretically degrade LPC into harmless metabolites, they have not been found in the circulation. In conclusion, understanding enzyme kinetics and LPC metabolism may help identify novel therapeutic targets in LPC-associated diseases.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Lisofosfatidilcolinas/metabolismo , Enfermedades Metabólicas/metabolismo , Fosfolipasas A2/metabolismo , Homeostasis , Humanos , Hidrólisis , Lipoproteínas LDL/metabolismo , Enfermedades Metabólicas/enzimología , Fosfatidilcolinas/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo
16.
J Lipid Res ; 59(11): 2063-2074, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30139761

RESUMEN

Platelet-activating factor (PAF) is a potent inflammatory mediator that exerts its actions via the single PAF receptor (PAF-R). Cells that biosynthesize alkyl-PAF also make abundant amounts of the less potent PAF analogue acyl-PAF, which competes for PAF-R. Both PAF species are degraded by the plasma form of PAF acetylhydrolase (PAF-AH). We examined whether cogenerated acyl-PAF protects alkyl-PAF from systemic degradation by acting as a sacrificial substrate to enhance inflammatory stimulation or as an inhibitor to dampen PAF-R signaling. In ex vivo experiments both PAF species are prothrombotic in isolation, but acyl-PAF reduced the alkyl-PAF-induced stimulation of human platelets that express canonical PAF-R. In Swiss albino mice, alkyl-PAF causes sudden death, but this effect can also be suppressed by simultaneously administering boluses of acyl-PAF. When PAF-AH levels were incrementally elevated, the protective effect of acyl-PAF on alkyl-PAF-induced death was serially decreased. We conclude that, although acyl-PAF in isolation is mildly proinflammatory, in a pathophysiological setting abundant acyl-PAF suppresses the action of alkyl-PAF. These studies provide evidence for a previously unrecognized role for acyl-PAF as an inflammatory set-point modulator that regulates both PAF-R signaling and hydrolysis.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Factor de Activación Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Azepinas/farmacología , Cromatografía Liquida , Femenino , Voluntarios Sanos , Lisofosfatidilcolinas/metabolismo , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolípidos/sangre , Fosfolípidos/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/antagonistas & inhibidores , Glicoproteínas de Membrana Plaquetaria/genética , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Triazoles/farmacología
17.
Blood ; 127(10): 1336-45, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26679863

RESUMEN

L5, the most electronegative and atherogenic subfraction of low-density lipoprotein (LDL), induces platelet activation. We hypothesized that plasma L5 levels are increased in acute ischemic stroke patients and examined whether lectin-like oxidized LDL receptor-1 (LOX-1), the receptor for L5 on endothelial cells and platelets, plays a critical role in stroke. Because amyloid ß (Aß) stimulates platelet aggregation, we studied whether L5 and Aß function synergistically to induce prothrombotic pathways leading to stroke. Levels of plasma L5, serum Aß, and platelet LOX-1 expression were significantly higher in acute ischemic stroke patients than in controls without metabolic syndrome (P < .01). In mice subjected to focal cerebral ischemia, L5 treatment resulted in larger infarction volumes than did phosphate-buffered saline treatment. Deficiency or neutralizing of LOX-1 reduced infarct volume up to threefold after focal cerebral ischemia in mice, illustrating the importance of LOX-1 in stroke injury. In human platelets, L5 but not L1 (the least electronegative LDL subfraction) induced Aß release via IκB kinase 2 (IKK2). Furthermore, L5+Aß synergistically induced glycoprotein IIb/IIIa receptor activation; phosphorylation of IKK2, IκBα, p65, and c-Jun N-terminal kinase 1; and platelet aggregation. These effects were blocked by inhibiting IKK2, LOX-1, or nuclear factor-κB (NF-κB). Injecting L5+Aß shortened tail-bleeding time by 50% (n = 12; P < .05 vs L1-injected mice), which was prevented by the IKK2 inhibitor. Our findings suggest that, through LOX-1, atherogenic L5 potentiates Aß-mediated platelet activation, platelet aggregation, and hemostasis via IKK2/NF-κB signaling. L5 elevation may be a risk factor for cerebral atherothrombosis, and downregulating LOX-1 and inhibiting IKK2 may be novel antithrombotic strategies.


Asunto(s)
Isquemia Encefálica/sangre , Lipoproteínas LDL/sangre , Agregación Plaquetaria , Accidente Cerebrovascular/sangre , Péptidos beta-Amiloides/sangre , Animales , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Quinasa I-kappa B/metabolismo , Arteriosclerosis Intracraneal/sangre , Arteriosclerosis Intracraneal/patología , Trombosis Intracraneal/sangre , Trombosis Intracraneal/patología , Masculino , Ratones , Ratones Noqueados , Receptores Depuradores de Clase E/metabolismo , Transducción de Señal , Accidente Cerebrovascular/patología
18.
Nucleic Acids Res ; 43(W1): W338-42, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25943546

RESUMEN

Protein complexes are involved in many biological processes. Examining coupling between subunits of a complex would be useful to understand the molecular basis of protein function. Here, our updated (PS)(2) web server predicts the three-dimensional structures of protein complexes based on comparative modeling; furthermore, this server examines the coupling between subunits of the predicted complex by combining structural and evolutionary considerations. The predicted complex structure could be indicated and visualized by Java-based 3D graphics viewers and the structural and evolutionary profiles are shown and compared chain-by-chain. For each subunit, considerations with or without the packing contribution of other subunits cause the differences in similarities between structural and evolutionary profiles, and these differences imply which form, complex or monomeric, is preferred in the biological condition for the subunit. We believe that the (PS)(2) server would be a useful tool for biologists who are interested not only in the structures of protein complexes but also in the coupling between subunits of the complexes. The (PS)(2) is freely available at http://ps2v3.life.nctu.edu.tw/.


Asunto(s)
Complejos Multiproteicos/química , Programas Informáticos , Internet , Modelos Moleculares , Conformación Proteica , Análisis de Secuencia de Proteína
19.
J Lipid Res ; 57(8): 1435-46, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27256691

RESUMEN

Dyslipidemia has been proven to capably develop and aggravate chronic kidney disease. We also report that electronegative LDL (L5) is the most atherogenic LDL. On the other hand, retinoic acid (RA) and RA receptor (RAR) agonist are reported to be beneficial in some kidney diseases. "Stimulated by retinoic acid 6" (STRA6), one retinol-binding protein 4 receptor, was recently identified to regulate retinoid homeostasis. Here, we observed that L5 suppressed STRA6 cascades [STRA6, cellular retinol-binding protein 1 (CRBP1), RARs, retinoid X receptor α, and retinol, RA], but L5 simultaneously induced apoptosis and fibrosis (TGFß1, Smad2, collagen 1, hydroxyproline, and trichrome) in kidneys of L5-injected mice and L5-treated renal tubular cells. These L5-induced changes of STRA6 cascades, renal apoptosis, and fibrosis were reversed in kidneys of LOX1(-/-) mice. LOX1 RNA silencing and inhibitor of c-Jun N-terminal kinase and p38MAPK rescued the suppression of STRA6 cascades and apoptosis and fibrosis in L5-treated renal tubular cells. Furthermore, crbp1 gene transfection reversed downregulation of STRA6 cascades, apoptosis, and fibrosis in L5-treated renal tubular cells. For mimicking STRA6 deficiency, efficient silencing of STRA6 RNA was performed and was found to repress STRA6 cascades and caused apoptosis and fibrosis in L1-treated renal tubular cells. In summary, this study reveals that electronegative L5 can cause kidney apoptosis and fibrosis via the suppression of STRA6 cascades, and implicates that STRA6 signaling may be involved in dyslipidemia-mediated kidney disease.


Asunto(s)
Apoptosis , Riñón/patología , Lipoproteínas LDL/fisiología , Proteínas de la Membrana/metabolismo , Animales , Línea Celular , Dislipidemias/complicaciones , Dislipidemias/metabolismo , Fibrosis , Humanos , Riñón/metabolismo , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones Endogámicos C57BL , Receptores Depuradores de Clase E/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Clin Chem ; 62(2): 320-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26607724

RESUMEN

BACKGROUND: Studies have shown that the classic acute-phase protein C-reactive protein (CRP) has proinflammatory effects on vascular cells and may play a causal role in the pathogenesis of coronary artery disease. A growing body of evidence has suggested that interplay between CRP, lectin-like oxidized LDL receptor-1 (LOX-1), and atherogenic LDL may underlie the mechanism of endothelial dysfunction that leads to atherosclerosis. CONTENT: We review the biochemical evidence for an association of CRP, LOX-1, and either oxidized LDL (OxLDL) or electronegative L5 LDL with the pathogenesis of coronary artery disease. Artificially oxidized OxLDL has been studied extensively for its role in atherogenesis, as has electronegative L5 LDL, which is present at increased levels in patients with increased cardiovascular risks. OxLDL and L5 have been shown to stimulate human aortic endothelial cells to produce CRP, indicating that CRP is synthesized locally in the endothelium. The ligand-binding face (B-face) of CRP has been shown to bind the LOX-1 scavenger receptor and increase LOX-1 expression in endothelial cells, thereby promoting the uptake of OxLDL or L5 by LOX-1 into endothelial cells to induce endothelial dysfunction. SUMMARY: CRP and LOX-1 may form a positive feedback loop with OxLDL or L5 in atherogenesis, whereby increased levels of atherogenic LDL in patients with cardiovascular risks induce endothelial cells to express CRP, which may in turn increase the expression of LOX-1 to promote the uptake of atherogenic LDL into endothelial cells. Further research is needed to confirm a causal role for CRP in atherogenesis.


Asunto(s)
Aterosclerosis/metabolismo , Proteína C-Reactiva/metabolismo , Lipoproteínas LDL/metabolismo , Receptores Depuradores de Clase E/metabolismo , Aorta/metabolismo , Aterosclerosis/etiología , Proteína C-Reactiva/química , Enfermedad de la Arteria Coronaria/metabolismo , Células Endoteliales , Endotelio Vascular/metabolismo , Humanos , Macrófagos/metabolismo , Receptores Depuradores de Clase E/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA