RESUMEN
Staphylococcus aureus enterotoxin B (SEB), one of the most common bacterial toxins in food contamination, has been poorly understood in relationship to food allergy outcomes. To investigate whether the ingestion of enterotoxins in food allergens could affect the development of food allergy, OVA-sensitized female BALB/c mice were challenged with OVA added with different doses of SEB or LPS. Allergic symptoms, such as diarrhea rate and hypothermia, could be aggravated in mice challenged with OVA and a low dose of SEB. The increased differentiation of Th2 and reduced expression of CD103 in dendritic cells was found in mice coexposed to SEB and OVA. Additionally, there was an increasing differentiation of Th1 induced by a high dose of SEB. The expression of ST2+ in intestinal mast cells was also increased in mice sensitized with a low dose of SEB and OVA. Employing several in vitro cell culture models showed that the secretion of IL-33 from intestinal epithelial cells and IL-4 from group 2 innate lymphoid cells, activation of bone marrow-derived dendritic cells, and differentiation of naive T cells were induced by SEB and OVA. Our work proved that challenge with low-dose SEB and OVA partly aggravated the food allergy, suggesting a (to our knowledge) new finding of the potential cofactor of food allergy and that the contamination of SEB in food allergens deserves attention for allergic and normal individuals.
RESUMEN
What infants eat early in life may shape the immune system and have long-standing consequences on the health of the host during later life. In the early months post-birth, breast milk serves as the exclusive and optimal nourishment for infants, facilitating crucial molecular exchanges between mother and infant. Recent advances have uncovered that some maternal factors influence breastfed infant outcomes, including the risk of food allergy (FA). To date, accumulated data show that breastfed infants have a lower risk of FA. However, the issue remains disputed, some reported preventive allergy effects, while others did not confirm such effects, or if identified, protective effects were limited to early childhood. The disputed outcomes may be attributed to the maternal status, as it determines the compounds of the breast milk that breastfed infants are exposed to. In this review, we first detail the compounds in breast milk and their roles in infant FA. Then, we present maternal factors resulting in alterations in breast milk compounds, such as maternal health status, maternal diet intake, and maternal food allergen intake, which subsequently impact FA in breastfed infants. Finally, we analyze how these compounds in breast milk alleviated the infant FA by mother-to-infant transmission. Altogether, the mechanisms are primarily linked to the synergetic and direct effects of compounds in breast milk, via promoting the colonization of gut microbiota and the development of the immune system in infants.
RESUMEN
Inflammatory bowel disease (IBD) and food allergy (FA) increase in tandem, but the potential impact of IBD on FA remains unclear. We sought to determine the role of IBD on FA. We first assessed the changes of FA-related risk factors in dextran sulphate sodium salt (DSS) induced colitis mice model. Then, we evaluated the role of IBD on FA in mice. FA responses were determined using a clinical allergy score, body temperature change, serum antibody levels, cytokines level and mouse mast cell protease 1 (MMCP-1) concentration. Accumulation of regulatory T cells was tested using flow cytometry. Intestinal changes were identified by histology, immunohistochemistry, gene expression and gut microbial community structure. In DSS-induced colitis mice model, we found the intestinal damage, colonic neutrophil infiltration, and downregulation of splenic Th2 cytokines and Tregs in mesenteric lymph nodes (MLN). Moreover, we also found that IBD can alleviate the FA symptoms and lead to the significant downregulation of Th2 cytokines, serum IgE and MMCP-1. However, IBD exacerbates intestinal injury and promotes the gene expression levels of IL-33 and IL-5 in the small intestine, damages the intestinal tissue structure and aggravates intestinal dysbiosis in FA. IBD functions as a double-edged sword in FA. From the perspective of clinical symptoms and humoral immune responses, IBD can reduce FA response by downregulating Th2 cytokines. But from the perspective of the intestinal immune system, IBD potentially disrupts intestinal tolerance to food antigens by damaging intestinal tissue structure and causing intestinal dysbiosis.
Asunto(s)
Sulfato de Dextran , Modelos Animales de Enfermedad , Hipersensibilidad a los Alimentos , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Ratones Endogámicos BALB C , Linfocitos T Reguladores , Animales , Hipersensibilidad a los Alimentos/inmunología , Hipersensibilidad a los Alimentos/patología , Ratones , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Linfocitos T Reguladores/inmunología , Microbioma Gastrointestinal/inmunología , Citocinas/metabolismo , Colitis/inmunología , Colitis/inducido químicamente , Colitis/patología , Quimasas/metabolismo , Disbiosis/inmunología , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Células Th2/inmunología , FemeninoRESUMEN
BACKGROUND & AIMS: Hepatocyte apoptosis, a well-defined form of cell death in non-alcoholic steatohepatitis (NASH), is considered the primary cause of liver inflammation and fibrosis. However, the mechanisms underlying the regulation of hepatocyte apoptosis in NASH remain largely unclear. We explored the anti-apoptotic effect of hepatocyte CD1d in NASH. METHODS: Hepatocyte CD1d expression was analyzed in patients with NASH and mouse models. Hepatocyte-specific gene overexpression or knockdown and anti-CD1d crosslinking were used to investigate the anti-apoptotic effect of hepatocyte CD1d on lipotoxicity-, Fas-, and concanavalin (ConA)-mediated liver injuries. A high-fat diet, a methionine-choline-deficient diet, a Fas agonist, and ConA were used to induce lipotoxic and/or apoptotic liver injuries. Palmitic acid was used to mimic lipotoxicity-induced apoptosis in vitro. RESULTS: We identified a dramatic decrease in CD1d expression in hepatocytes of patients with NASH and mouse models. Hepatocyte-specific CD1d overexpression and knockdown experiments collectively demonstrated that hepatocyte CD1d protected against hepatocyte apoptosis and alleviated hepatic inflammation and injuries in NASH mice. Furthermore, decreased JAK2-STAT3 signaling was observed in NASH patient livers. Mechanistically, anti-CD1d crosslinking on hepatocytes induced tyrosine phosphorylation of the CD1d cytoplasmic tail, leading to the recruitment and phosphorylation of JAK2. Phosphorylated JAK2 activated STAT3 and subsequently reduced apoptosis in hepatocytes, which was associated with an increase in anti-apoptotic effectors (Bcl-xL and Mcl-1) and a decrease in pro-apoptotic effectors (cleaved-caspase 3/7). Moreover, anti-CD1d crosslinking effectively protected against Fas- or ConA-mediated hepatocyte apoptosis and liver injury in mice. CONCLUSIONS: Our study uncovered a previously unrecognized anti-apoptotic CD1d-JAK2-STAT3 axis in hepatocytes that conferred hepatoprotection and highlighted the potential of hepatocyte CD1d-directed therapy for liver injury and fibrosis in NASH, as well as in other liver diseases associated with hepatocyte apoptosis. IMPACT AND IMPLICATIONS: Excessive and/or sustained hepatocyte apoptosis is critical in driving liver inflammation and injury. The mechanisms underlying the regulation of hepatocyte apoptosis in non-alcoholic steatohepatitis (NASH) remain largely unclear. Here, we found that CD1d expression in hepatocytes substantially decreases and negatively correlates with the severity of liver injury in patients with NASH. We further revealed a previously unrecognized anti-apoptotic CD1d-JAK2-STAT3 signaling axis in hepatocytes, which confers significant protection against liver injury in NASH and acute liver diseases. Thus, hepatocyte CD1d-targeted therapy could be a promising strategy to manipulate liver injury in both NASH and other hepatocyte apoptosis-related liver diseases.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Apoptosis , Concanavalina A , Modelos Animales de Enfermedad , Hepatocitos , InflamaciónRESUMEN
KEY MESSAGE: Calcium polypeptide plays a key role during cadmium stress responses in rice, which is involved in increasing peroxidase activity, modulating pectin methylesterase activity, and regulating cell wall by reducing malondialdehyde content. Cadmium (Cd) contamination threatens agriculture and human health globally, emphasizing the need for sustainable methods to reduce cadmium toxicity in crops. Calcium polypeptide (CaP) is a highly water-soluble small molecular peptide acknowledged for its potential as an organic fertilizer in promoting plant growth. However, it is still unknown whether CaP has effects on mitigating Cd toxicity. Here, we investigated the effect of CaP application on the ability to tolerate toxic Cd in rice. We evaluated the impact of CaP on rice seedlings under varying Cd stress conditions and investigated the effect mechanism of CaP mitigating Cd toxicity by Fourier transform infrared spectroscopy (FTIR), fluorescent probe dye, immunofluorescent labeling, and biochemical analysis. We found a notable alleviation of Cd toxicity by reduced malondialdehyde content and increased peroxidase activity. In addition, our findings reveal that CaP induces structural alterations in the root cell wall by modulating pectin methylesterase activity. Altogether, our results confirm that CaP not only promoted biomass accumulation but also reduced Cd concentration in rice. This study contributes valuable insights to sustainable strategies for addressing Cd contamination in agricultural ecosystems.
Asunto(s)
Cadmio , Malondialdehído , Oryza , Estrés Oxidativo , Pectinas , Oryza/efectos de los fármacos , Oryza/metabolismo , Cadmio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Pectinas/metabolismo , Malondialdehído/metabolismo , Proteínas de Plantas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Péptidos/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
BACKGROUND: Food allergies could be regulated via Th1/Th2 balance, intestinal oxidative stress and inflammation, which were considered as food allergy-associated factors. Medicine-food homologous materials (MFHM) were considered as a significant factor with respect to preventing human diseases. To evaluate the associations between MFHM and food allergy-associated factors, two types of MFHM with the remarkable function of anti-oxidation and anti-inflammation, Gardeniae fructus (Gar) and Sophorae glos (Sop), were chosen. RESULTS: By constructing an H2O2-induced oxidative stress model of Caco-2 cells and an intestinal inflammatory cell model of Caco-2 cells with tumor necrosis factor-α and interleukin (IL)-13, the contents of anti-oxidative enzymes (SOD and GSH), inflammatory factor (IL-8) and tight junction proteins (zonula occludens-1, occludin and claudin-1) in Caco-2 cells were determined. Moreover, the anti-allergic effects of digestive Sop and Gar were evaluated by measuring the levels of Th1/Th2/Treg cytokines in the spleen cells of sensitized mice. The results showed that the SOD and GSH were obviously increased and the gene and protein expression of IL-8 and claudin-1 were improved with the incubation of digested Sop. Th2 cytokine was reduced and Th1/Th2 balance was promoted on coincubation with ovalbumin (OVA) and digested Sop in the splenocytes. However, the digested Gar had no effect. CONCLUSION: The digested Sop not only had suppressive effects on intestinal oxidative stress and inflammation, but also had regulative effects on Th1/Th2 balance. This finding demonstrated that not all of the MFHM with anti-oxidant and anti-inflammatory effects have anti-allergic activities. The present study may be contributing toward establishing a screening model to identify the anti-allergic MFHM. © 2024 Society of Chemical Industry.
Asunto(s)
Antialérgicos , Hipersensibilidad a los Alimentos , Ratones , Humanos , Animales , Células Th2 , Células TH1 , Células CACO-2 , Claudina-1/metabolismo , Peróxido de Hidrógeno/metabolismo , Interleucina-8 , Citocinas/metabolismo , Interleucina-13 , Ovalbúmina , Inflamación/metabolismo , Inmunidad , Estrés Oxidativo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Ratones Endogámicos BALB C , Modelos Animales de EnfermedadRESUMEN
BACKGROUND: The interaction between food allergens and plant polyphenols has become a safe and effective management strategy to prevent food allergies. Ovalbumin (OVA) is the most abundant allergen in egg whites. Resveratrol (RES) is a plant polyphenol that is abundant in red grapes, berries, and peanuts, and has an anti-allergic effect on allergy-related immune cells. However, there is little information about the effect of RES on the allergenicity of OVA. In this study, the effect of RES on the allergenicity of OVA was investigated. RESULTS: Molecular docking and spectroscopic studies indicated that the addition of RES changed the structure of OVA. The digestion and transfer rate of OVA-RES were effectively improved with an in vitro gastrointestinal digestion model and Caco-2 cell model, especially when the molar ratio of OVA-RES was 1:20. Meanwhile, the KU812 cell degranulation assay proved that the potential allergenicity was remarkably decreased while the molar ratios of OVA-RES were increased to 1:20. Furthermore, hydrogen bonds and van der Waals forces were the dominating forces to stabilize the OVA-RES complexes. CONCLUSION: All the findings demonstrated that the potential allergenicity of OVA was reduced when interacting with RES, and RES can be a potential food material for preparing a hypoallergenic protein, especially for egg allergy. © 2023 Society of Chemical Industry.
Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Humanos , Ovalbúmina/química , Resveratrol , Simulación del Acoplamiento Molecular , Células CACO-2 , Inmunoglobulina E , Hipersensibilidad a los Alimentos/prevención & controlRESUMEN
Food allergy is a significant concern for the health of humans worldwide. In addition to dietary exposure of food allergens, genetic and environmental factors also play an important role in the development of food allergy. However, only the tip of the iceberg of risk factors in food allergy has been identified. The importance of food allergy caused by orally exposed risk factors and constituents, including veterinary drugs, pesticides, processed foods/derivatives, nanoparticles, microplastics, pathogens, toxins, food additives, dietary intake of salt/sugar/total fat, vitamin D, and therapeutic drugs, are highlighted and discussed in this review. Moreover, the epithelial barrier hypothesis, which is closely associated with the occurrence of food allergy, is also introduced. Additionally, several orally exposed risk factors and constituents that have been reported to disrupt the epithelial barrier are elucidated. Finally, the possible mechanisms and key immune cells of orally exposed risk factors and constituents in aggravating food allergy are overviewed. Further work should be conducted to define the specific mechanism by which these risk factors and constituents are driving food allergy, which will be of central importance to the targeted therapy of food allergy.
Asunto(s)
Hipersensibilidad a los Alimentos , Hipersensibilidad a los Alimentos/etiología , Humanos , Factores de Riesgo , Alérgenos/efectos adversos , AnimalesRESUMEN
Accurate quantification of allergens in food is crucial for ensuring consumer safety. Pretreatment steps directly affect accuracy and efficiency of allergen quantification. We systematically reviewed the latest advances in pretreatment steps for antibody-based methods and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) protein quantification methods in food. For antibody-based methods, the effects induced by food matrix like decreased allergen solubility, epitope masking, and nonspecific binding are of the upmost importance. To mitigate interference from the matrix, effective and proper extraction can be used to obtain the target allergens with a high protein concentration and necessary epitope exposure. Removal of interfering substances, extraction systems (buffers and additives), assistive technologies, and commercial kits were discussed. About LC-MS/MS quantification, the preparation of the target peptides is the crucial step that significantly affects the efficiency and results obtained from the MS detector. The advantages and limitations of each method for pre-purification, enzymatic digestion, and peptide desalting were compared. Additionally, the application characteristics of microfluidic-based pretreatment devices were illustrated to improve the convenience and efficiency of quantification. A promising research direction is the targeted development of pretreatment methods for complex food matrices, such as lipid-based and carbohydrate-based matrices.
Asunto(s)
Alérgenos , Análisis de los Alimentos , Espectrometría de Masas en Tándem , Alérgenos/análisis , Alérgenos/química , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Análisis de los Alimentos/métodos , Anticuerpos/química , Cromatografía Líquida con Espectrometría de MasasRESUMEN
BACKGROUND: The authors compare the effectiveness and safety of endovascular treatment (EVT) versus best medical management (BMM) in strokes attributable to acute basilar artery occlusion (BAO). METHODS: The present analysis was based on the ongoing, prospective, multicenter ATTENTION (Endovascular Treatment for Acute Basilar Artery Occlusion) trial registry in China. Our analytic sample comprised 2134 patients recruited at 48 sites between 2017 and 2021 and included 462 patients who received BMM and 1672 patients who received EVT. We performed an inversed probability of treatment weighting analysis. Qualifying patients had to present within 24 hours of estimated BAO. The primary clinical outcome was favorable functional outcome (modified Rankin Scale score, 0-3) at 90 days. We also performed a sensitivity analysis with the propensity score matching-based and the instrumental variable-based analysis. RESULTS: In our primary analysis using the inversed probability of treatment weighting-based analysis, there was a significantly higher rate of favorable outcome at 90 days among EVT patients compared with BMM-treated patients (adjusted relative risk, 1.42 [95% CI, 1.19-1.65]; absolute risk difference, 11.8% [95% CI, 6.9-16.7]). The mortality was significantly lower (adjusted relative risk, 0.78 [95% CI, 0.69-0.88]; absolute risk difference, -10.3% [95% CI, -15.8 to -4.9]) in patients undergoing EVT. Results were generally consistent across the secondary end points. Similar associations were seen in the propensity score matching-based and instrumental variable-based analysis. CONCLUSIONS: In this real-world study, EVT was associated with significantly better functional outcomes and survival at 90 days. Well-designed randomized studies comparing EVT with BMM in the acute BAO are needed. REGISTRATION: URL: www.chictr.org.cn; Unique identifier: ChiCTR2000041117.
Asunto(s)
Arteriopatías Oclusivas , Procedimientos Endovasculares , Accidente Cerebrovascular , Arteriopatías Oclusivas/terapia , Arteria Basilar , Procedimientos Endovasculares/efectos adversos , Procedimientos Endovasculares/métodos , Humanos , Estudios Prospectivos , Sistema de Registros , Trombectomía/métodos , Resultado del TratamientoRESUMEN
Effective delivery of luminal antigens to the underlying immune system is the initial step in generating antigen-specific responses in the gut. However, a large body of information regarding the immune response activation process remains unknown. Recently, goblet cells (GCs) have been reported to form goblet cell-associated antigen passages (GAPs). Luminal antigens can be transported inside GAPs and reach subepithelial immune cells to induce antigen-specific immune responses, contributing largely to gut homeostasis and the prevention of some intestinal diseases like allergic enteritis and bacterial translocation. In this article, we summarized recent observations on the formation of intestinal GAPs and their roles in mucosal immunity. We hope that this review can offer a fresh perspective and valuable insights for clinicians and researchers interested in studying the intestinal immune system.
Asunto(s)
Colitis , Células Caliciformes , Humanos , Sistema Inmunológico , Inmunidad Mucosa , Transporte BiológicoRESUMEN
The goal of food allergy (FA) prevention and treatment is to induce oral tolerance (OT). Appropriate nutritional interventions are essential to induce OT to food allergens. This review introduces the mechanism of OT and the importance of early nutritional interventions, and then firstly summarizes specific nutritional factors to induce the development of OT of FA, including proteins, vitamins, fatty acids, saccharides and probiotics. The regulatory mechanism mainly induces the development of tolerance by increasing local or systemic protective regulatory T cells (Tregs) to suppress FA, while the gut microbiota may also be changed to maintain intestinal homeostasis. For allergens-specific OT, the disruption to the structure of proteins and epitopes is critical for the induction of tolerance by hydrolyzed and heated proteins. Vitamins (vitamin A, D), fatty acids, saccharides and probiotics as allergens nonspecific OT also induce the development of OT through immunomodulatory effects. This review contributes to our understanding of OT in FA through nutritional interventions. Nutritional interventions play an important role in the induction of OT, and offer promising approaches to reduce allergy risk and alleviate FA. Moreover, due to the importance and diversity of nutrition, it must be the future trend of induction of OT in FA.
RESUMEN
Food allergy is a pathological immune reaction triggered by normal innocuous dietary proteins. Soybean is widely used in many food products and has long been recognized as a source of high-quality proteins. However, soybean is listed as one of the 8 most significant food allergens. The prevalence of soybean allergy is increasing worldwide and impacts the quality of life of patients. Currently, the only strategy to manage food allergy relies on strict avoidance of the offending food. Nutritional supplementation is a new prevention strategy which is currently under evaluation. Selenium (Se), as one of the essential micronutrients for humans and animals, carries out biological effects through its incorporation into selenoproteins. The use of interventions with micronutrients, like Se, might be an interesting new approach. In this review we describe the involvement of Se in a variety of processes, including maintaining immune homeostasis, preventing free radical damage, and modulating the gut microbiome, all of which may contribute to in both the prevention and treatment of food allergy. Se interventions could be an interesting new approach for future treatment strategies to manage soybean allergy, and food allergy in general, and could help to improve the quality of life for food allergic patients.
Asunto(s)
Hipersensibilidad a los Alimentos , Selenio , Animales , Humanos , Glycine max , Calidad de Vida , Alérgenos , Suplementos Dietéticos , Micronutrientes , Inmunoglobulina ERESUMEN
Active polysaccharides are extensively utilized in the fields of food and medicine because of their rich functional properties and structural plasticity. However, there are still few systematic studies and reviews on active polysaccharides for allergy. Allergy, especially food allergy, occurs frequently around the world and is related to a variety of factors such as age, genetics and dietary habits. Currently in medicine, avoiding allergens and desensitizing can effectively relieve allergy symptoms, but these are difficult to maintain over the long term and come with risks. Based on the supplementation of dietary nutrition to these two treatments, it has been discovered in recent years that the use of active ingredients from natural substances can effectively intervene in allergies. Considering the potential of active polysaccharides in this regard, we systematically characterize the latent patterns of polysaccharides in allergic symptoms and pathogenesis, including the aspects of gut, immunomodulatory, oxidative stress and signaling pathways, as well as the application prospect of them in allergy. It can be found that active polysaccharides have excellent anti-allergic potential, especially from the ocean. We believe that the active polysaccharides are associated with the treatment of allergic diseases, which may provide the benefits to allergy sufferers in the future.
RESUMEN
Cow milk is an important source of food protein for children; however, it could lead to allergy, especially for infants. α-Lactalbumin (α-LA) and ß-lactoglobulin (ß-LG) from whey protein make up a relatively high proportion of milk proteins and have received widespread attention as major allergens in milk. However, few studies have identified the epitopes of both proteins simultaneously. In this study, ImmunoCAP and indirect ELISA were first used for detection of sIgE to screen sera from allergic patients with high binding capacity for α-LA and ß-LG. Subsequently, the mimotopes was biopanned by phage display technology and bioinformatics and 17 mimic peptide sequences were obtained. Aligned with the sequences of α-LA or ß-LG, we identified one linear epitope on α-LA at AA 11-26 and 5 linear epitopes on ß-LG at AA 9-29, AA 45-57, AA 77-80, AA 98-101, and AA 121-135, respectively. Meanwhile, the 8 conformational epitopes and their distributions of α-LA and ß-LG were located using the Pepitope Server. Finally, glutamine and lysine were determined as common AA residues for the conformational epitopes both on α-LA and ß-LG. Moreover, we found the addition of mouse anti-human IgE during the biopanning process did not significantly affect the identification of the epitopes.
RESUMEN
Environmental pollution by organic pollutants poses a great threat to the ecosystem and human development. Solar-powered catalytic oxidation technology can solve the existing energy and pollution crisis. Hence, in this work, cubic nano-In2O3 modified g-C3N4 composite was synthesized by in situ calcination, then it was coupled with hydrogen peroxide for the degradation of antibiotic under visible light. The results of SEM and XPS showed that In2O3 and g-C3N4 were closely combined. The catalytic oxidation efficiency of the antibiotic doxycycline was greatly improved when the as-prepared compound was coupled with hydrogen peroxide, and 88.2% of doxycycline was degraded within 80 min. By designing the active species inhibition test, it was found that a large number of hydroxyl radicals were generated in the system after adding hydrogen peroxide, which accelerated the degradation of the target. Hydrogen peroxide not only acts as a source of hydroxyl radical, but also as an active electron acceptor, which promotes the separation of photogenerated electron-hole pairs in the composite photocatalyst. Therefore, the double oxidation system formed by In2O3/g-C3N4 coupled with hydrogen peroxide can degrade the target at a higher rate. This work provided a research basis for the synthesis of In2O3 with regular morphology and simplified synthesis of In2O3/g-C3N4, and explored the practicability of the coupling method of double advanced oxidation for pollutant degradation.
Asunto(s)
Contaminantes Ambientales , Peróxido de Hidrógeno , Humanos , Doxiciclina , Ecosistema , Antibacterianos , Oxidación-ReducciónRESUMEN
Food allergies are a global food safety problem. Peanut allergies are common due, in part, to their popular utilization in the food industry. Peanut allergy is typically an immunoglobulin E-mediated reaction, and peanuts contain 17 allergens belonging to different families in peanut. In this review, we first introduce the mechanisms and management of peanut allergy, followed by the basic structures of associated allergens. Subsequently, we summarize methods of epitope localization for peanut allergens. These methods can be instrumental in speeding up the discovery of allergenicity-dependent structures. Many attempts have been made to decrease the allergenicity of peanuts. The structures of hypoallergens, which are manufactured during processing, were analyzed to strengthen the desensitization process and allergen immunotherapy. The identification of conformational epitopes is the bottleneck in both peanut and food allergies. Further, the identification and modification of such epitopes will lead to improved strategies for managing and preventing peanut allergy. Combining traditional wet chemistry research with structure simulation studies will help in the epitopes' localization.
Asunto(s)
Arachis , Hipersensibilidad al Cacahuete , Humanos , Arachis/química , Hipersensibilidad al Cacahuete/prevención & control , Alérgenos , Industria de Alimentos , EpítoposRESUMEN
Elm bark (Ulmus pumila L.) flour is a nutritious and sustainable edible material for developing the macromolecular network in the food matrix. In this study, the effects of Elm bark flour and water addition on technological and sensory characteristics of gluten-free whole foxtail millet bread were investigated. Structural analysis methods such as SEM, X-ray diffraction, and FTIR were used to supplement the rheological properties and baking quality. Results showed that Elm bark flour improved gelatinization characteristics and rheological properties (tanδ < 1) of gluten-free dough. Moreover, the porous and network structure of gluten-free bread was observed by image analysis and further confirmed by Fourier transform infrared spectroscopy and X-Ray diffraction, endowing higher specific volume (1.98 ± 0.13 cm3/g), and a decrease hardness from 97.43 to 11.56 N. Additionally, with the incorporation of Elm bark flour-water combination, specific volume (2.15 ± 0.09 cm3/g) and hardness (6.83 ± 0.50 N) were further optimized. Combined with the results of rheological properties and bread structure, Elm bark flour at 15% ratio and water addition at 120% level exhibited the most potent improvement of gluten-free bread. These results might contribute to the potential utilization of Elm bark flour as the sustainable resource in gluten-free products. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05670-x.
RESUMEN
Food allergy has become a major public health problem all over the world. Evidence showed that allergic reactions induced by food proteins often lead to disturbances in the gut microbiota (symbiotic bacteria). Gut microbiota plays an important role in maintaining the balance between intestinal immune tolerance and allergic reactions. Dietary intervention has gradually become an important method for the prevention and treatment of allergic diseases, and changing the composition of gut microbiota through oral intake of prebiotics and probiotics may serve as a new effective adjuvant treatment measure for allergic diseases. In this paper, the main mechanism of food allergy based on intestinal immunity was described firstly. Then, the clinical and experimental evidence showed that different prebiotics and probiotics affect food allergy by changing the structure and composition of gut microbiota was summarized. Moreover, the molecular mechanism in which the gut microbiota and their metabolites may directly or indirectly regulate the immune system or intestinal epithelial barrier function to affect food immune tolerance of host were also reviewed to help in the development of food allergy prevention and treatment strategies based on prebiotics and probiotics.
RESUMEN
Food allergy (FA) is a global public health issue with growing prevalence. Increasing evidence supports the strong correlation between intestinal microbiota dysbiosis and food allergies. Probiotic intervention as a microbiota-based therapy could alleviate FA effectively. In addition to improving the intestinal microbiota disturbance and affecting microbial metabolites to regulate immune system, immune responses induced by the recognition of pattern recognition receptors to probiotic components may also be one of the mechanisms of probiotics protecting against FA. In this review, it is highlighted in detail about the regulatory effects on the immune system and anti-allergic potential of probiotic components including the flagellin, pili, peptidoglycan, lipoteichoic acid, exopolysaccharides, surface (S)-layer proteins and DNA. Probiotic components could enhance the function of intestinal epithelial barrier as well as regulate the balance of cytokines and T helper (Th) 1/Th2/regulatory T cell (Treg) responses. These evidences suggest that probiotic components could be used as nutritional or therapeutic agents for maintaining immune homeostasis to prevent FA, which will contribute to providing new insights into the resolution of FA and better guidance for the development of probiotic products.