Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Ecotoxicol Environ Saf ; 283: 116822, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39096686

RESUMEN

Antimony (Sb) poses a significant ecological threat. This study combines biochemical, pathological, transcriptome, and metabolome analyses to assess the short-term (14-day) toxic impact of two Sb levels (25 mg/kg and 125 mg/kg) on earthworms (Eisenia fetida). Higher Sb concentration caused severe intestinal damage, elevated metallothionein (MT) levels, and reduced antioxidant capacity. Metabolome analysis identifies 404 and 1698 significantly differential metabolites in the two groups. Metabolites such as S(-)-cathinone, N-phenyl-1-naphthylamine, serotonin, 4-hydroxymandelonitrile, and 5-fluoropentylindole contributed to the metabolic responses to Sb stress. Transcriptome analysis shows increased chitin synthesis as a protective response, impacting amino sugar and nucleotide sugar metabolism for cell wall synthesis and damage repair. Integrated analysis indicated that 5 metabolite-gene pairs were found in two Sb levels and 11 enriched pathways were related to signal transduction, carbohydrate metabolism, immune system, amino acid metabolism, digestive system, and nervous system. Therefore, the integration of multiomics approaches enhanced our comprehension of the molecular mechanisms underlying the toxicity of Sb in E. fetida.


Asunto(s)
Antimonio , Metaboloma , Oligoquetos , Contaminantes del Suelo , Transcriptoma , Animales , Oligoquetos/efectos de los fármacos , Oligoquetos/genética , Antimonio/toxicidad , Metaboloma/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Metalotioneína/genética , Metalotioneína/metabolismo
2.
Ecotoxicol Environ Saf ; 263: 115387, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37598547

RESUMEN

Acidic soils cover approximately 50 % of the arable land with high N2O emission potential. 3,4-dimethylpyrazole phosphate (DMPP) inhibits N2O emission from soils; however, its efficiency is affected by acidity. Liming is used for soil conditioning to ameliorate the effects of acidity. In the present study, we investigated the effects of liming on the efficiency of DMPP in inhibiting N2O emission in acidic soils and the mechanisms involved. We evaluated the impact of liming, DMPP, and combined application and its microbial responses in two acidic soils from Zengcheng (ZC) and Shaoguan (SG) City, Guangdong Province, China. Soils were subjected to four treatments: un-limed soil (low soil pH) + urea (LU), un-limed soil + urea + DMPP (LD), limed soil (high soil pH) + urea (HU), and limed soil + urea + DMPP (HD) for analyses of the mineral N, N2O emissions, and full-length 16S and metagenome sequencing. The results revealed that, HU significantly decreased and increased the N2O emission by 17.8 % and 235.0 % in ZC and SG, respectively, compared with LU. This was caused by a trade-off between N2O production and consumption after liming, where microbial communities and N-cycling functional genes show various compositions in different acidic soils. LD reduced N2O emission by 23.5 % in ZC, whereas decreased 1.5 % was observed in SG. Interestingly, DMPP efficiency considerably improved after liming in two acidic soils. Compared with LU, HD significantly reduced N2O emissions by 61.2 % and 48.5 % in ZC and SG, respectively. Synergy of mitigation efficiency was observed by lime and DMPP application, which was attributed to the changes in the dominant nitrifiers and the increase in N2O consumption by denitrifiers. The combined application of lime and DMPP is a high-efficiency strategy for N2O mitigation can ensure agricultural sustainability in acidic arable soils with minimal environmental damage.


Asunto(s)
Fosfatos , Suelo , Óxido Nitroso , Yoduro de Dimetilfenilpiperazina
3.
Environ Sci Pollut Res Int ; 30(28): 72884-72899, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37184801

RESUMEN

The competitive adsorption ability and mechanisms of lead (Pb2+) and cadmium (Cd2+) by nanoplastics (NPs) with positive charges (PS-NH2) and negative charges (PS-SO3H) were investigated by using batch adsorption experiments coupled with the two-dimensional correlation spectroscopy (2D-COS) method. The adsorption isotherm results showed that PS-SO3H exhibited a higher adsorption capacity for Pb2+ or Cd2+ compared to PS-NH2. The adsorption affinity of NPs for Pb2+ was higher than that of Cd2+. The competitive adsorption results showed that Pb2+ had a more pronounced negative effect on the adsorption of Cd2+. The adsorption capacities of NPs were affected by the surface charge and solution pH. Electrostatic force was the main factor influencing PS-SO3H to capture Pb2+ and Cd2+, while chelation was the main mechanism between PS-NH2 and metals. The functional groups of NPs played significant roles in the sorption of Pb2+ or Cd2+ according to the FTIR spectra and 2D-COS analysis. This study provided new insights into the impact of NPs on the transport of other pollutants.


Asunto(s)
Cadmio , Contaminantes Químicos del Agua , Cadmio/análisis , Microplásticos , Plomo , Adsorción , Análisis Espectral , Contaminantes Químicos del Agua/química , Cinética
4.
Artículo en Inglés | MEDLINE | ID: mdl-35682267

RESUMEN

Livestock keratin waste is a rich source of protein. However, the unique structure of livestock keratin waste makes its valorization a great challenge. This paper reviews the main methods for the valorization of livestock keratin waste, which include chemical, biological, and other novel methods, and summarizes the main agricultural applications of keratin-based material. Livestock keratin waste is mainly used as animal feed and fertilizer. However, it has promising potential for biosorbents and in other fields. In the future, researchers should focus on the biological extraction and carbonization methods of processing and keratin-based biosorbents for the soil remediation of farmland.


Asunto(s)
Queratinas , Ganado , Agricultura/métodos , Animales , Queratinas/química , Queratinas/metabolismo , Suelo
5.
Sci Rep ; 11(1): 20380, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650133

RESUMEN

This paper investigates how the topological structure of the technological spillover network among agents affects the adoption of a new clean technology and the reduction of system's carbon emissions. Through building a systematic technology adoption model with technological spillover effect among agents from the network perspective, this paper first illustrates how the new technology diffuses from the earlier adopters to the later adopters under different network topological structures. Further, this paper examines how the carbon emission constraints imposed on pilot agents affect the carbon emissions of other agents and the entire system under different network topological structures. Simulation results of our study suggest that, (1) different topological structures of the technological spillover network have great influence on the adoption and diffusion of a new advanced technology; (2) imposing carbon emission constraints on pilot agents can reduce carbon emissions of other agents and thereby the entire system. However, the effectiveness of the carbon emission constraints is also largely determined by the network topological structures. Our study implies that the empirical research of the network topological structure among the participating entities is a pre-requisite to evaluate the real effectiveness of a carbon emission reduction policy from the system perspective.

6.
Waste Manag ; 130: 82-92, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34052470

RESUMEN

Waste chicken feathers are the ideal precursor for the production of low-cost N-enriched biochar. KOH-modified N-enriched biochar (KNB) containing 15.92 wt% N was successfully prepared using waste chicken feathers. The adsorption kinetics results showed that KNB had rapid Cd (2 h) and Pb (1 h) adsorption rates. The Cd and Pb adsorption capacities of KNB (the values of KF were 22.324 (Cd) and 119.654 (Pb) mg1-(1/n)·L1/n·g-1) were 7.07 and 26.52 times higher than those of the original biochar based on the adsorption isotherm results. The KNB was stable at pH 3-6 and had stronger co-adsorption capacities in double-ion systems. Based on the adsorption experiments and various characterization methods, we concluded that the primary Cd and Pb adsorption mechanisms of KNB involved electrostatic interactions, cation-π interactions, complexation, and K+ exchange. The precipitation mechanism could partially account for Pb adsorption but not for Cd adsorption. KOH modification enhanced the electronegativity of biochar and then increased the electrostatic attraction. Surface O- and N-containing functional groups were involved in Cd and Pb adsorption. Graphitic-N, oxidised-N, and OCO were the main active adsorption groups, the relative contents of which increased after KOH modification, thus increasing the Cd and Pb adsorption performance. Therefore, KNB can be used as a fast and highly efficient adsorption agent to remove Cd and Pb from wastewater containing either Cd and Pb or a combination of these two metals.


Asunto(s)
Cadmio , Contaminantes Químicos del Agua , Adsorción , Animales , Carbón Orgánico , Pollos , Plumas/química , Cinética , Plomo , Contaminantes Químicos del Agua/análisis
7.
J Hazard Mater ; 416: 126262, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492997

RESUMEN

Cadmium (Cd) and tetracycline (TC) cause serious environmental risks. Nanomaterials have been extensively applied for environmental remediation. The size and content of nanoparticles directly affect the removal of contaminants. However, size regulation and quantitative determination of nanoparticles cannot be easily realized. In this study, hydrogels with different polymerization degrees were prepared by adjusting the contents of acrylamide (AM) and sodium lignosulfonate polymeric monomers. Ferrous sulfide (FeS) nanoparticles of different sizes were synthesized in situ within the hydrogels. The nanoparticle size decreased from 600 to 200 nm with increasing hydrogel polymerization degree, and an incomplete crystalline state was observed at the highest polymerization degree. By combining energy dispersive spectroscopy (EDS) images with the maximum between-class variance (Otsu) method, the content of nanoparticles was calculated to be 7.81%, 15.05%, 22.62%, 27.10%, 21.97%, and 23.95%. The distribution state of FeS compounds was also obtained. A low polymerization degree resulted in high FeS dispersal, and a high polymerization degree affected the uniformity distribution based on irregular ion diffusion. The obtained nanocomposites with different polymerization degrees were applied to the removal of Cd and TC in water. The removal capacity for both contaminants revealed a trend of initially increasing and then decreasing. The initial increase was related to the increasing content and decreasing size of the FeS nanoparticles, while the following decrease was due to the decreasing content and incomplete crystallization of the FeS nanoparticles. Overall, changing the proportion of polymeric monomers is an effective way to regulate particle size, and the Otsu method combined with EDS mapping images is a feasible method for calculating the content of nanoparticles.


Asunto(s)
Cadmio , Nanopartículas , Compuestos Ferrosos , Hidrogeles , Lignina , Tetraciclina
8.
Sci Total Environ ; 772: 145355, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578146

RESUMEN

Zeolite has a high adsorption capacity for heavy metals, but it is difficult to separate from the medium because of its small particle size. In this study, magnetic zeolite was synthesized from natural, low-grade molybdenum ore by adding nano ferroferric oxide (saturation magnetization 83.43 emu/g) directly in the hydrothermal synthesis process, which was used to adsorb cadmium from wastewater. The results of scanning electron microscopy showed that the nano ferroferric oxide was adhered to the surface of the zeolite to make it magnetic. The vibrating sample magnetometer showed that the larger the amount of nano ferroferric oxide added, the higher the saturation magnetization of the magnetic zeolite. The saturation magnetization of the magnetic zeolite with a loading proportion of 25% was 18.18 emu/g with a specific surface area of 459.8 m2/g. The adsorption experiments showed that when the pH value is greater than 4, the adsorption capacity of magnetic zeolite is high and stable, and the theoretical maximum adsorption capacity is 204.2 mg Cd/g. Na+ and Ca2+ have different inhibitory functions on the adsorption capacity. The mapping graphs showed that cadmium is captured by the magnetic zeolite after contact with cadmium, and XRD confirmed the presence of cadmium oxide in the magnetic zeolite after adsorption, XPS and EDS results indicated that ion exchange is one of the main mechanisms of cadmium adsorption by magnetic zeolites, and electrostatic adsorption may also have a contribution.

9.
Environ Pollut ; 264: 114739, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32434113

RESUMEN

Strategies for reducing cadmium (Cd) content in polluted farmland soils are currently limited. A type of composite with nanoparticles incorporated into a hydrogel have been developed to efficiently remove heavy metals from sewage, but their application in soils faces challenges, such as organic hydrogel degradation due to oxygen exposure and slow Cd2+ release from soil constituents. To overcome these challenges, a composite with superior stability for long-term application in soil is required. In this study, ferrous sulfide (FeS) nanoparticle@lignin hydrogel composites were developed. The lignin-based hydrogels inherited lignin's natural mechanical and environmental stability and the FeS nanoparticles efficiently adsorbed Cd2+ and enhanced Cd2+ desorption from soils by producing H+. The high sorption capacity (833.3 g kg-1) of the composite was attributed to four proposed mechanisms, including cadmium sulfide (CdS) precipitation via chemical reaction (84.06%), lignin complexation (13.19%), hydrogel swelling (0.61%), and nanoparticle sorption (2.15%). In addition, Fe2+ displaced from the composite was gradually oxidized to form solid iron oxide hydroxide, which increased Cd2+ sorption. The composite significantly reduced the total, surfactant-soluble, and fixed Cd in heavily and lightly polluted paddy soils by 22.4-49.6%, 13.5-68.6%, and 40.1-16.6%, respectively, in 7 days.


Asunto(s)
Cadmio/análisis , Contaminantes del Suelo/análisis , Compuestos Ferrosos , Hidrogeles , Lignina , Suelo
10.
Environ Pollut ; 251: 930-937, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31234259

RESUMEN

Heavy metal stress in soil accelerates the plant root exudation of organic ligands. The degradation of exudate ligands can be fundamental to controlling the complexation of heavy metals. However, this process remains poorly understood. Here, we investigated the relationship between the transformation of glycine, a representative amino acid exudate, and cadmium/lead mobility in soils. Two 48-h incubation experiments were conducted after glycine addition to the soils. Parameters related to glycine distribution and degradation, Cd/Pb mobility, and the formation of glycine-Cd complex were analyzed. Glycine addition gradually decreased the Cd and Pb mobility throughout the 48-h incubation. By the end of the experiment, the CaCl2-extracted Cd and Pb concentrations decreased by 63.5% and 43.6%, respectively. The glycine mineralization was strong in the first 6 h, as indicated by a sharp decrease in CO2 efflux rates from 10.04 ±â€¯0.62 to 3.51 ±â€¯0.07 mg C-CO2 kg-1 soil h-1. The mineralization rates notably decreased after 6 h. The comparisons of dissolved organic carbon and hydrolyzable amino acid contents indicated that glycine mineralization in solution (95.6%) was much stronger than that in soil solids (49.3%). At the end of incubation, 0.22 mmol kg-1 glycine remained in soil solids. The remaining glycine provided sufficient sorption sites for Cd2+ and Pb2+, resulting in enhanced metal fixation via complexation. Comparisons of zeta potentials supported the formation of the glycine-Cd complex. The Cd and Pb immobilization processes could be attributed to metal-glycine complex formation, sorption re-equilibrium, and glycine degradation. These findings emphasize that the biogeochemical processes of glycine, derived from root exudates or protein degradation products, increased the sorption of heavy metals to soils and thus reduced their toxicity to plants.


Asunto(s)
Cadmio/química , Glicina/química , Plomo/química , Contaminantes del Suelo/química , Suelo/química , Biodegradación Ambiental , Fabaceae/metabolismo , Raíces de Plantas/metabolismo
11.
Bioresour Technol ; 292: 121948, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31408776

RESUMEN

To improve the adsorption efficiency, a H3PO4-modified biochar (CFCP) was prepared using chicken feather and applied to Cd2+ and Pb2+ adsorption. The pseudo-second-order model could explain the Cd2+ and Pb2+ adsorption behavior. CFCP had faster adsorption rate than non-modified biochar (CFC2). The Langmuir and Freundlich isotherm could better describe the Cd2+ and Pb2+ adsorption, respectively. The value of qm for Cd2+ adsorption and KF for Pb2+ adsorption by CFCP was 7.84 mg·g-1 and 24.41 mg1-(1/n)·L1/n·g-1, which was 1.38 and 5.41 times of the corresponding results of CFC2. Relative to Cd2+, Pb2+ was selectively adsorbed by biochars in the binary metal system. Phosphate precipitation explained in part the selective adsorption of Pb2+. Proline, glucose, and pH (4-6) had little influence on Cd2+ and Pb2+ adsorption. Electrostatic interaction, precipitation, and O-H bonds were the primary adsorption mechanisms. The increased N-containing heterocycles of CFCP accounted for the increased Cd2+ and Pb2+ adsorption.


Asunto(s)
Cadmio , Pollos , Adsorción , Animales , Carbón Orgánico , Plumas , Iones , Plomo , Ácidos Fosfóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA