Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Arch Toxicol ; 98(6): 1827-1842, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563869

RESUMEN

Aminoglycosides are commonly used antibiotics for treatment of gram-negative bacterial infections, however, they might act on inner ear, leading to hair-cell death and hearing loss. Currently, there is no targeted therapy for aminoglycoside ototoxicity, since the underlying mechanisms of aminoglycoside-induced hearing impairments are not fully defined. This study aimed to investigate whether the calcium channel blocker verapamil and changes in intracellular & extracellular calcium could ameliorate aminoglycoside-induced ototoxicity in zebrafish. The present findings showed that a significant decreased number of neuromasts in the lateral lines of zebrafish larvae at 5 days' post fertilization after neomycin (20 µM) and gentamicin (20 mg/mL) exposure, which was prevented by verapamil. Moreover, verapamil (10-100 µM) attenuated aminoglycoside-induced toxic response in different external calcium concentrations (33-3300 µM). The increasing extracellular calcium reduced hair cell loss from aminoglycoside exposure, while lower calcium facilitated hair cell death. In contrast, calcium channel activator Bay K8644 (20 µM) enhanced aminoglycoside-induced ototoxicity and reversed the protective action of higher external calcium on hair cell loss. However, neomycin-elicited hair cell death was not altered by caffeine, ryanodine receptor (RyR) agonist, and RyR antagonists, including thapsigargin, ryanodine, and ruthenium red. The uptake of neomycin into hair cells was attenuated by verapamil and under high external calcium concentration. Consistently, the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin was also reduced by verapamil and high external calcium. Significantly, zebrafish larvae when exposed to neomycin exhibited decreased swimming distances in reaction to droplet stimulus when compared to the control group. Verapamil and elevated external calcium effectively protected the impaired swimming ability of zebrafish larvae induced by neomycin. These data imply that prevention of hair cell damage correlated with swimming behavior against aminoglycoside ototoxicity by verapamil and higher external calcium might be associated with inhibition of excessive ROS production and aminoglycoside uptake through cation channels. These findings indicate that calcium channel blocker and higher external calcium could be applied to protect aminoglycoside-induced listening impairments.


Asunto(s)
Antibacterianos , Bloqueadores de los Canales de Calcio , Calcio , Gentamicinas , Células Ciliadas Auditivas , Neomicina , Verapamilo , Pez Cebra , Animales , Bloqueadores de los Canales de Calcio/farmacología , Calcio/metabolismo , Verapamilo/farmacología , Neomicina/toxicidad , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Gentamicinas/toxicidad , Antibacterianos/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Ototoxicidad/prevención & control , Aminoglicósidos/toxicidad , Sistema de la Línea Lateral/efectos de los fármacos , Larva/efectos de los fármacos , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/prevención & control
2.
Addict Biol ; 28(12): e13351, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38017646

RESUMEN

Conditioned place preference (CPP) paradigm in zebrafish has been used to measure drug reward, but there is limited research on CPP reinstatement to determine relapse vulnerability. The present study aimed to investigate extinction and reinstatement of methamphetamine (MA)-induced CPP in zebrafish and evaluate the model's predictive validity. Zebrafish received different doses of MA (0-60 mg/kg) during CPP training. The preferred dose of MA at 40 mg/kg was used for extinction via either confined or nonconfined procedures. The extinguished CPP was reinstated by administering a priming dose of MA (20 mg/kg) or various stressors. To assess persistent susceptibility to reinstatement, MA CPP and reinstatement were retested following 14 days of abstinence. In addition, the effects of SCH23390, naltrexone, and clonidine on MA CPP during acquisition, expression, or reinstatement phases were monitored. MA induced CPP in a dose-dependent manner. Both nonconfined and confined extinction procedures time-dependently reduced the time spent on the MA-paired side. A priming dose of MA, chasing stress, or yohimbine reinstated the extinguished CPP. After 14 days of abstinence, the MA CPP remained extinguished and was significantly reinstated by MA priming or chasing stress. Similar to the observations in rodents, SCH23390 suppressed the acquisition of MA CPP, naltrexone reduced the expression and MA priming-induced reinstatement, while clonidine prevented stress-induced reinstatement of MA CPP. This work expanded the zebrafish CPP paradigm to include extinction and reinstatement phases, demonstrating predictive validity and highlighting its potential as a valuable tool for exploring drug relapse.


Asunto(s)
Metanfetamina , Animales , Metanfetamina/farmacología , Pez Cebra , Morfina/farmacología , Extinción Psicológica , Clonidina/farmacología , Naltrexona/farmacología , Recurrencia
3.
Chin J Physiol ; 66(2): 65-72, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082994

RESUMEN

Prenatal opioid exposure may impede the development of adaptive responses to environmental stimuli by altering the stress-sensitive brain circuitry located at the paraventricular nucleus of the hypothalamus (PVH) and locus coeruleus (LC). Corticotropin-releasing factor (CRF) released from neurons in the PVH has emerged as a key molecule to initiate and integrate the stress response. Methadone (Meth) and buprenorphine (Bu) are two major types of synthetic opioid agonists for first-line medication-assisted treatment of opioid (e.g., morphine, Mor) use disorder in pregnant women. No studies have compared the detrimental effects of prenatal exposure to Meth versus Bu on the stress response of their offspring upon reaching adulthood. In this study, we aimed to compare stress-related neuronal activation in the PVH and LC induced by restraint (RST) stress in adult male rat offspring with prenatal exposure to the vehicle (Veh), Bu, Meth, or Mor. CFos-immunoreactive cells were used as an indicator for neuronal activation. We found that RST induced less neuronal activation in the Meth or Mor exposure groups compared with that in the Bu or Veh groups; no significant difference was detected between the Bu and Veh exposure groups. RST-induced neuronal activation was completely prevented by central administration of a CRF receptor antagonist (α-helical CRF9-41, 10 µg/3 µL) in all exposure groups, suggesting the crucial role of CRF in this stress response. In offspring without RST, central administration of CRF (0.5 µg/3 µL)-induced neuronal activation in the PVH and LC. CRF-induced neuronal activation was lessened in the Meth or Mor exposure groups compared with that in the Bu or Veh groups; no significant difference was detected between the Bu and Veh exposure groups. Moreover, RST- or CRF-induced neuronal activation in the Meth exposure group was comparable with that in the Mor exposure group. Further immunohistochemical analysis revealed that the Meth and Mor exposure groups displayed less CRF neurons in the PVH of offspring with or without RST compared with the Bu or Veh groups. Thus, stress-induced neuronal activation in the PVH and LC was well preserved in adult male rat offspring with prenatal exposure to Bu, but it was substantially lessened in those with prenatal exposure to Meth or Mor. Lowered neuronal activation found in the Meth or Mor exposure groups may be, at least in part, due to the reduction in the density of CRF neurons in the PVH.


Asunto(s)
Buprenorfina , Efectos Tardíos de la Exposición Prenatal , Ratas , Masculino , Femenino , Embarazo , Humanos , Animales , Morfina/farmacología , Metadona/farmacología , Hormona Liberadora de Corticotropina/farmacología , Hormona Liberadora de Corticotropina/fisiología , Buprenorfina/farmacología , Analgésicos Opioides/farmacología , Ratas Sprague-Dawley , Neuronas
4.
Am J Drug Alcohol Abuse ; 48(6): 673-683, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36137281

RESUMEN

Background: Inhalant (e.g. toluene) misuse by adolescents has been linked to psychosis and persistent cognitive deficits. Identifying effective strategies to improve cognitive deficits following chronic toluene misuse is critical. 5-HT1A receptor has been proposed as a target for the treatment of cognitive deficits.Objectives: We compared the effects of antipsychotics on recognition deficits after adolescent toluene exposure in mice and elucidated the role of 5-HT1A receptors in the cognition-improving effects of antipsychotics.Methods: Male NMRI mice (n = 279) received one injection per day of either toluene (750 mg/kg) or corn oil at postnatal days 35-39 and 42-46. Thereafter, the acute and subchronic effects of haloperidol, aripiprazole, or clozapine on toluene-induced recognition deficits were evaluated by novel object recognition test.Results: Acute administration of aripiprazole (p < .05) and clozapine (p < .01), but not haloperidol, significantly attenuated the toluene-induced recognition deficits. Pretreatment with 5-HT1A receptor antagonist WAY -100,635 (p < .05) blocked their beneficial effects. Moreover, 5-HT1A receptor agonist buspirone (p < .01) ameliorated the toluene-induced recognition deficits, which was reversed by WAY -100,635 (p < .001). Finally, after repeated treatment with clozapine, aripiprazole, and buspirone daily for 14 days, the impaired object recognition in toluene-exposed mice was significantly improved (p < .05) and the beneficial effects lasted for at least 2 weeks (p < .05).Conclusions: The results indicate that clozapine and aripiprazole, which display 5-HT1A agonist properties, restored cognitive deficits in mice induced by adolescent toluene exposure. These findings suggest that these antipsychotics should be further explored as a potential treatment option for cognitive deficits in patients with psychosis associated with toluene exposure.


Asunto(s)
Antipsicóticos , Cognición , Receptor de Serotonina 5-HT1A , Tolueno , Animales , Masculino , Ratones , Receptor de Serotonina 5-HT1A/metabolismo , Tolueno/efectos adversos , Antipsicóticos/uso terapéutico , Cognición/efectos de los fármacos
5.
Nutr Neurosci ; 24(6): 443-458, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31331257

RESUMEN

Objectives: The neuroprotective effects of resveratrol against excitatory neurotoxicity have been associated with N-methyl-D-aspartate receptor (NMDAR) inhibition. This study examined the differential inhibitory effects of resveratrol on NMDAR-mediated responses in neuronal cells with different NMDAR subtype composition.Methods: The effects of resveratrol on NMDA-induced cell death and calcium influx in immature and mature rat primary cortical neurons were determined and compared. Moreover, the potencies and efficacies of resveratrol to inhibit NR1/NR2A, NR1/NR2B, NR1/NR2C, and NR1/NR2D NMDAR expressed in HEK 293 cells were evaluated.Results: Resveratrol significantly attenuated NMDA-induced cell death in mature neurons, but not in immature neurons. Resveratrol also concentration-dependently reduced NMDA-induced calcium influx among all NMDAR subtypes, but displayed NR2 subunit selectivity, with a potency rank order of NR2B = NR2D > NR2A = NR2C and an efficacy rank order of NR2B = NR2C > NR2A = NR2D. Data show the stronger inhibitory effects of resveratrol on NR1/NR2B than other subtypes. Moreover, resveratrol did not affect hippocampal long-term potentiation (LTP), but impaired long-term depression (LTD).Discussion: These findings reveal the specific NMDAR modulating profile of resveratrol, providing further insight into potential mechanisms underlying the protective effects of resveratrol on neurological disorders.


Asunto(s)
Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fármacos Neuroprotectores/administración & dosificación , Receptores de N-Metil-D-Aspartato/fisiología , Resveratrol/administración & dosificación , Animales , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Células HEK293 , Humanos , Potenciales de la Membrana/efectos de los fármacos , Ratas Sprague-Dawley
6.
Int J Mol Sci ; 21(12)2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32549398

RESUMEN

Background: Honokiol (HNK), a dimer of allylphenol obtained from the bark of Magnolia officinalis was demonstrated to exert an array of biological actions in different excitable cell types. However, whether or how this compound can lead to any perturbations on surface-membrane ionic currents remains largely unknown. Methods: We used the patch clamp method and found that addition of HNK effectively depressed the density of macroscopic hyperpolarization-activated cation currents (Ih) in pituitary GH3 cells in a concentration-, time- and voltage-dependent manner. By the use of a two-step voltage protocol, the presence of HNK (10 µM) shifted the steady-state activation curve of Ih density along the voltage axis to a more negative potential by approximately 11 mV, together with no noteworthy modification in the gating charge of the current. Results: The voltage-dependent hysteresis of Ih density elicited by long-lasting triangular ramp pulse was attenuated by the presence of HNK. The HNK addition also diminished the magnitude of deactivating Ih density elicited by ramp-up depolarization with varying durations. The effective half-maximal concentration (IC50) value needed to inhibit the density of Ih or delayed rectifier K+ current identified in GH3 cells was estimated to be 2.1 or 6.8 µM, respectively. In cell-attached current recordings, HNK decreased the frequency of spontaneous action currents. In Rolf B1.T olfactory sensory neurons, HNK was also observed to decrease Ih density in a concentration-dependent manner. Conclusions: The present study highlights the evidence revealing that HNK has the propensity to perturb these ionic currents and that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is proposed to be a potential target for the in vivo actions of HNK and its structurally similar compounds.


Asunto(s)
Compuestos de Bifenilo/farmacología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Lignanos/farmacología , Magnolia/química , Animales , Línea Celular , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp , Extractos Vegetales/química , Ratas
7.
J Biomed Sci ; 24(1): 18, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28245819

RESUMEN

BACKGROUND: Sarcosine, a glycine transporter type 1 inhibitor and an N-methyl-D-aspartate (NMDA) receptor co-agonist at the glycine binding site, potentiates NMDA receptor function. Structurally similar to sarcosine, N,N-dimethylglycine (DMG) is also N-methyl glycine-derivative amino acid and commonly used as a dietary supplement. The present study compared the effects of sarcosine and DMG on NMDA receptor-mediated excitatory field potentials (EFPs) in mouse medial prefrontal cortex brain slices using a multi-electrode array system. RESULTS: Glycine, sarcosine and DMG alone did not alter the NMDA receptor-mediated EFPs, but in combination with glutamate, glycine and its N-methyl derivatives significantly increased the frequency and amplitude of EFPs. The enhancing effects of glycine analogs in combination with glutamate on EFPs were remarkably reduced by the glycine binding site antagonist 7-chlorokynurenate (7-CK). However, DMG, but not sarcosine, reduced the frequency and amplitude of EFPs elicited by co-application of glutamate plus glycine. D-cycloserine, a partial agonist at the glycine binding site on NMDA receptors, affected EFPs in a similar manner to DMG. Furthermore, DMG, but not sarcosine, reduced the frequencies and amplitudes of EFPs elicited by glutamate plus D-serine, another endogenous ligand for glycine binding site. CONCLUSIONS: These findings suggest that sarcosine acts as a full agonist, yet DMG is a partial agonist at glycine binding site of NMDA receptors. The molecular docking analysis indicated that the interactions of glycine, sarcosine, and DMG to NMDA receptors are highly similar, supporting that the glycine binding site of NMDA receptors is a critical target site for sarcosine and DMG.


Asunto(s)
Potenciales de la Membrana/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Sarcosina/análogos & derivados , Sarcosina/farmacología , Animales , Masculino , Ratones , Ratones Endogámicos ICR
8.
Neurobiol Learn Mem ; 128: 56-64, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26743042

RESUMEN

Prenatal morphine (PM) affects the development of brain reward system and cognitive function. The present study aimed to determine whether PM exposure increases the vulnerability to MA addiction. Pregnant Sprague-Dawley rats were administered saline or morphine during embryonic days 3-20. The acquisition, extinction and reinstatement of methamphetamine (MA) conditioned place preference (CPP) and intravenous self-administration (SA) paradigms were assessed in the male adult offspring. There was no difference in the acquisition and expression of MA CPP between saline- and PM-exposed rats, whereas PM-exposed rats exhibited slower extinction and greater MA priming-induced reinstatement of drug-seeking behavior than controls. Similarly, MA SA under progressive ratio and fixed ratio schedules was not affected by PM exposure, but PM-exposed rats required more extinction sessions to reach the extinction criteria and displayed more severe MA priming-, but not cue-induced, reinstatement. Such alterations in extinction and reinstatement were not present when PM-exposed rats were tested in an equivalent paradigm assessing operant responding for food pellets. Our results demonstrate that PM exposure did not affect the association memory formation during acquisition of MA CPP or SA, but impaired extinction learning and increased MA-primed reinstatement in both tasks. These findings suggest that the offspring of women using morphine or heroin during pregnancy might predict persistent MA seeking during extinction and enhanced propensity to MA relapse although they might not be more susceptible to the reinforcing effect of MA during initiation of drug use.


Asunto(s)
Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Metanfetamina/administración & dosificación , Morfina/administración & dosificación , Efectos Tardíos de la Exposición Prenatal/psicología , Animales , Condicionamiento Clásico/efectos de los fármacos , Femenino , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley
9.
J Nanosci Nanotechnol ; 15(3): 2067-78, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26413622

RESUMEN

Nanoparticles, such as semiconductor quantum dots (QDs), have been found increasing use in biomedical diagnosis and therapeutics because of their unique properties, including quantum confinement, surface plasmon resonance, and superparamagnetism. Cell-penetrating peptides (CPPs) represent an efficient mechanism to overcome plasma membrane barriers and deliver biologically active molecules into cells. In this study, we demonstrate that three arginine-rich CPPs (SR9, HR9, and PR9) can noncovalently complex with red light emitting QDs, dramatically increasing their deliv- ery into living cells. Zeta-potential and size analyses highlight the importance of electrostatic interactions between positive-charged CPP/QD complexes and negative-charged plasma membranes indicating the efficiency of transmembrane complex transport. Subcellular colocalization indicates associations of QD with early endosomes and lysosomes following PR9-mediated delivery. Our study demonstrates that nontoxic CPPs of varied composition provide an effective vehicle for the design of optimized drug delivery systems.


Asunto(s)
Arginina , Péptidos de Penetración Celular/química , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo , Transporte Biológico , Línea Celular Tumoral , Color , Humanos , Espacio Intracelular/metabolismo
10.
J Appl Toxicol ; 35(3): 273-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25092119

RESUMEN

Hair cells are highly sensitive to environmental insults and other therapeutic drugs. The adverse effects of drugs such as aminoglycosides can cause hair cell death and lead to hearing loss and imbalance. The objective of the present study was to evaluate the protective activity of L-ascorbic acid, N-acetylcysteine (NAC) and apocynin on neomycin-induced hair cell damage in zebrafish (Danio rerio) larvae at 5 days post fertilization (dpf). Results showed that the loss of hair cells within the neuromasts of the lateral lines after neomycin exposure was evidenced by a significantly lower number of neuromasts labeled with fluorescent dye FM1-43FX observed under a microscope. Co-administration with L-ascorbic acid, NAC and apocynin protected neomycin-induced hair cell loss within the neuromasts. Moreover, these three compounds reduced the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin, indicating that their antioxidant action is involved. In contrast, the neuromasts were labeled with specific fluorescent dye Texas-red conjugated with neomycin to detect neomycin uptake. Interestingly, the uptake of neomycin into hair cells was not influenced by these three antioxidant compounds. These data imply that prevention of hair cell damage against neomycin by L-ascorbic acid, NAC and apocynin might be associated with inhibition of excessive ROS production, but not related to modulating neomycin uptake. Our findings conclude that L-ascorbic acid, NAC and apocynin could be used as therapeutic drugs to protect aminoglycoside-induced listening impairment after further confirmatory studies.


Asunto(s)
Antibacterianos/toxicidad , Antioxidantes/farmacología , Embrión no Mamífero/efectos de los fármacos , Células Ciliadas Auditivas Internas/efectos de los fármacos , Neomicina/toxicidad , Pez Cebra , Acetofenonas/farmacología , Acetilcisteína/farmacología , Alternativas al Uso de Animales , Animales , Ácido Ascórbico/farmacología , Supervivencia Celular/efectos de los fármacos , Embrión no Mamífero/metabolismo , Embrión no Mamífero/patología , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patología , Mecanorreceptores/efectos de los fármacos , Mecanorreceptores/metabolismo , Mecanorreceptores/patología , Microscopía Confocal , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra/embriología
11.
Int J Neuropsychopharmacol ; 17(10): 1647-58, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24763081

RESUMEN

The repeated administration of methamphetamine (MA) to animals in a single-day 'binge' dosing regimen produces damage to dopamine and serotonin terminals and psychosis-like behaviours similar to those observed in MA abusers. The present study aimed to examine the effects of MA binge exposure on 5-HT2A receptors, the subtype of serotonin receptors putatively involved in psychosis. ICR male mice were treated with MA (4 × 5 mg/kg) or saline at 2 h intervals. Recognition memory and social behaviours were sequentially evaluated by a novel location recognition test, a novel object recognition test, a social interaction and a nest-building test to confirm the persistent cognitive and behavioural impairments after this dosing regimen. Subsequently, a hallucinogenic 5-HT2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI)-induced head-twitch, molecular and electrophysiological responses were monitored. Finally, the levels of 5-HT2C, 5-HT1A, 5-HT2A and mGlu2 receptors in the medial prefrontal cortex were determined. MA binge exposure produced recognition memory impairment, reduced social behaviours, and increased DOI-induced head-twitch response, c-Fos and Egr-2 expression and field potentials in the medial prefrontal cortex. Furthermore, MA binge exposure increased 5-HT2A and decreased mGlu2 receptor expression in the medial frontal cortex, whereas 5-HT2C and 5-HT1A receptors were unaffected. These data reveal that the increased behavioural, molecular and electrophysiological responses to DOI might be associated with an up-regulation of 5-HT2A receptors in the medial prefrontal cortex after MA binge exposure. Identifying the biochemical alterations that parallel the behavioural changes in a mouse model of MA binge exposure may facilitate targeting therapies for treatment of MA-related psychiatric disorders.


Asunto(s)
Estimulantes del Sistema Nervioso Central/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Metanfetamina/administración & dosificación , Receptor de Serotonina 5-HT2A/metabolismo , Anfetaminas/farmacología , Animales , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Conducta Exploratoria/efectos de los fármacos , Movimientos de la Cabeza/efectos de los fármacos , Técnicas In Vitro , Relaciones Interpersonales , Masculino , Ratones , Ratones Endogámicos ICR , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Reconocimiento en Psicología/efectos de los fármacos , Agonistas de Receptores de Serotonina/farmacología
12.
Neurotherapeutics ; 21(3): e00328, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38355360

RESUMEN

Methamphetamine (MA) use disorder poses significant challenges to both the affected individuals and society. Current non-drug therapies like transcranial direct-current stimulation and transcranial magnetic stimulation have limitations due to their invasive nature and limited reach to deeper brain areas. Transcranial focused ultrasound (FUS) is gaining attention as a noninvasive option with precise spatial targeting, able to affect deeper areas of the brain. This research focused on assessing the effectiveness of FUS in influencing the infralimbic cortex (IL) to prevent the recurrence of MA-seeking behavior, using the conditioned place preference (CPP) method in rats. The study involved twenty male Sprague-Dawley rats. Neuronal activation by FUS was first examined via electromyography (EMG). Rats received alternately with MA or saline, and confined to one of two distinctive compartments in a three compartment apparatus over a 4-day period. After CPP test, extinction, the first reinstatement, and extinction again, FUS was applied to IL prior to the second MA priming-induced reinstatement. Safety assessments were conducted through locomotor and histological function examinations. EMG data confirmed the effectiveness of FUS in activating neurons. Significant attenuation of reinstatement of MA CPP was found, along with successful targeting of the IL region, confirmed through acoustic field scanning, c-Fos immunohistochemistry, and Evans blue dye staining. No damage to brain tissue or impaired locomotor activity was observed. The results of the study indicate that applying FUS to the IL markedly reduced the recurrence of MA seeking behavior, without harming brain tissue or impairing motor skills. This suggests that FUS could be a promising method for treating MA use disorder, with the infralimbic cortex being an effective target for FUS in preventing MA relapse.


Asunto(s)
Extinción Psicológica , Metanfetamina , Ratas Sprague-Dawley , Animales , Masculino , Metanfetamina/farmacología , Ratas , Extinción Psicológica/efectos de los fármacos , Terapia por Ultrasonido/métodos , Estimulantes del Sistema Nervioso Central/farmacología , Corteza Prefrontal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo
13.
Pharmaceuticals (Basel) ; 16(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37375760

RESUMEN

Ketamine offers a fast-acting approach to relieving treatment-resistant depression, but its abuse potential is an issue of concern. As ketamine is a noncompetitive N-methyl-D-aspartate receptor (NMDAR) ion channel blocker, modulation of NMDAR might be an effective strategy to counteract the abuse liability of ketamine and even to treat ketamine use disorder. This study evaluated whether NMDAR modulators that act on glycine binding sites can decrease motivation to obtain ketamine and reduce reinstatement to ketamine-seeking behavior. Two NMDAR modulators, D-serine and sarcosine were examined. Male Sprague-Dawley rats underwent training to acquire the ability to self-administer ketamine. The motivation to self-administer ketamine or sucrose pellets was examined under a progressive ratio (PR) schedule. The reinstatement of ketamine-seeking and sucrose pellet-seeking behaviors were assessed after extinction. The results showed that both D-serine and sarcosine significantly decreased the breakpoints for ketamine and prevented reinstatement of ketamine seeking. However, these modulators did not alter motivated behavior for sucrose pellets, the ability of the cue and sucrose pellets to reinstate sucrose-seeking behavior or spontaneous locomotor activity. These findings indicate that two NMDAR modulators can specifically reduce the measures of motivation and relapse for ketamine in rats, suggesting that targeting the glycine binding site of the NMDAR is a promising approach for preventing and treating ketamine use disorder.

14.
Biomed Pharmacother ; 165: 115270, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37544280

RESUMEN

Traumatic brain injury (TBI) often leads to long-term neurocognitive dysfunctions. Adult neurogenesis in the hippocampal dentate gyrus (DG) serves critical functions in cognition but can be disrupted by brain injury and insult in serval forms. In the present study, we explore the cellular and molecular targets of DPP-4 inhibitors (or gliptins) as related to hippocampal function and TBI cognitive sequelae. Two structurally different gliptins, sitagliptin and vildagliptin, were examined using a controlled cortical impact (CCI) model of moderate TBI in mice. Sensorimotor CCI, although distal from the hippocampus, impaired hippocampal-dependent cognition without obvious hippocampal tissue destruction. Neurogenic cell proliferation in the DG was increased accompanied by large numbers of reactive astrocyte. Increased numbers of immature granule cells with abnormal dendritic outgrowth were ectopically localized in the outer granule cell layer (GCL) and hilus. Long-term potentiation of dentate immature granule cells was also impaired. Both sitagliptin and vildagliptin attenuated the CCI-induced ectopic migration of doublecortin-positive immature neurons into the outer GCL and hilus, restored the normal dendritic branching pattern of the immature neurons and prevented astrocyte reactivation. Both gliptins prevented loss of normal synaptic integration in the DG after sensorimotor CCI and improved cognitive behavior. Sensorimotor cortical injury thus results in an abnormal neurogenesis pattern and astrocyte reactivation in the distal hippocampus which appears to contribute to the development of cognitive dysfunction after TBI. DPP-4 inhibitors prevent astrocyte reactivation, normalize the posttraumatic hippocampal neurogenesis and help to maintain normal electrophysiology in the DG with positive behavioral effect in a mouse model.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Inhibidores de la Dipeptidil-Peptidasa IV , Ratones , Animales , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Neuronas , Vildagliptina/farmacología , Hipocampo , Neurogénesis , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Cognición , Fosfato de Sitagliptina/farmacología
15.
Toxicol Appl Pharmacol ; 265(2): 158-65, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23067721

RESUMEN

Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-d-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure.


Asunto(s)
Encéfalo/efectos de los fármacos , Hipotermia/tratamiento farmacológico , Receptores de N-Metil-D-Aspartato/metabolismo , Sarcosina/farmacología , Tolueno/toxicidad , Animales , Ataxia/inducido químicamente , Ataxia/tratamiento farmacológico , Ataxia/metabolismo , Temperatura Corporal/efectos de los fármacos , Temperatura Corporal/fisiología , Encéfalo/metabolismo , Interacciones Farmacológicas , Hipotermia/inducido químicamente , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Ratones , Receptores de N-Metil-D-Aspartato/agonistas , Autoestimulación/fisiología
16.
Biomed Pharmacother ; 155: 113726, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36166962

RESUMEN

D-serine has attracted increasing attention for its possible role in depression. L-4-Fluorophenylglycine (L-4FPG), an inhibitor of the neutral amino acid transporter ASCT1/2, has been shown to regulate extracellular D-serine levels. The present study aimed to explore the potential antidepressant effects of L-4FPG. First, the acute effects of L-4FPG on the forced swimming test, elevated plus maze test, and novelty-suppressed feeding test were examined. L-4FPG showed antidepressant-like effects, which could be reversed by rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist. The phosphorylation levels of mTOR and GluR1 in the hippocampus were also increased after L-4FPG treatment. Next, the therapeutic effects of L-4FPG were examined in a chronic social defeat stress (CSDS) model of depression. L-4FPG ameliorated depression-like behaviors in mice subjected to CSDS. Furthermore, treatment with L-4FPG prior to each social defeat stress session not only decreased defensive behaviors but also prevented CSDS-induced social avoidance and anxiety-like and depression-like behaviors. These findings suggest that L-4FPG may be useful not only in alleviating depression but also in protecting against chronic stress-related psychiatric disorders.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Depresión , Ratones , Animales , 6-Ciano 7-nitroquinoxalina 2,3-diona/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Depresión/tratamiento farmacológico , Depresión/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Ratones Endogámicos C57BL , Antidepresivos/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Hipocampo , Serina/metabolismo , Serina/farmacología , Sirolimus/farmacología , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/farmacología , Mamíferos
17.
Neurophotonics ; 9(4): 045003, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36338453

RESUMEN

Significance: Revealing the dynamic associations between brain functions and behaviors is a significant challenge in neurotechnology, especially for awake subjects. Imaging cerebral hemodynamics in awake animal models is important because the collected data more realistically reflect human disease states. Aim: We previously reported a miniature head-mounted scanning photoacoustic imaging (hmPAI) system. In the present study, we utilized this system to investigate the effects of ketamine on the cerebral hemodynamics of normal rats and rats subjected to prolonged ketamine self-administration. Approach: The cortical superior sagittal sinus (SSS) was continuously monitored. The full-width at half-maximum (FWHM) of the photoacoustic (PA) A-line signal was used as an indicator of the SSS diameter, and the number of pixels in PA B-scan images was used to investigate changes in the cerebral blood volume (CBV). Results: We observed a significantly higher FWHM (blood vessel diameter) and CBV in normal rats injected with ketamine than in normal rats injected with saline. For rats subjected to prolonged ketamine self-administration, no significant changes in either the blood vessel diameter or CBV were observed. Conclusions: The lack of significant change in prolonged ketamine-exposed rats was potentially due to an increased ketamine tolerance. Our device can reliably detect changes in the dilation of cortical blood vessels and the CBV. This study validates the utility of the developed hmPAI system in an awake, freely moving rat model for behavioral, cognitive, and preclinical cerebral disease studies.

18.
J Biomed Sci ; 18: 19, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21342491

RESUMEN

BACKGROUND: In order to understand the interaction between the metabotropic glutamate subtype 5 (mGluR5) and N-methyl-D-aspartate (NMDA) receptors, the influence of mGluR5 positive modulators in the inhibition of NMDA receptors by the noncompetitive antagonist ketamine, the competitive antagonist D-APV and the selective NR2B inhibitor ifenprodil was investigated. METHODS: This study used the multi-electrode dish (MED) system to observe field potentials in hippocampal slices of mice. RESULTS: Data showed that the mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), as well as the positive allosteric modulators 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) and 3,3'-difluorobenzaldazine (DFB) alone did not alter the basal field potentials, but enhanced the amplitude of field potentials induced by NMDA. The inhibitory action of ketamine on NMDA-induced response was reversed by CHPG, DFB, and CDPPB, whereas the blockade of NMDA receptor by D-APV was restored by CHPG and CDPPB, but not by DFB. Alternatively, activation of NMDA receptors prior to the application of mGluR5 modulators, CHPG was able to enhance NMDA-induced field potentials and reverse the suppressive effect of ketamine and D-APV, but not ifenprodil. In addition, chelerythrine chloride (CTC), a protein kinase C (PKC) inhibitor, blocked the regulation of mGluR5 positive modulators in enhancing NMDA receptor activation and recovering NMDA receptor inhibition. The PKC activator (PMA) mimicked the effects of mGluR5 positive modulators on enhancing NMDA receptor activation and reversing NMDA antagonist-evoked NMDA receptor suppression. CONCLUSION: Our results demonstrate that the PKC-dependent pathway may be involved in the positive modulation of mGluR5 resulting in potentiating NMDA receptor activation and reversing NMDA receptor suppression induced by NMDA antagonists.


Asunto(s)
Hipocampo/metabolismo , Proteína Quinasa C/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , 2-Amino-5-fosfonovalerato/farmacología , Animales , Ketamina/farmacología , Masculino , Ratones , Ratones Desnudos , Piperidinas/farmacología , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
19.
Neurodegener Dis ; 8(5): 364-74, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21494012

RESUMEN

Parkinson's disease (PD) is one of the most common neurodegenerative disorders. The aim of the present study was to investigate the protective and restorative potential of magnolol, a major bioactive biphenolic from the bark of Magnolia officinalis, for alleviating the motor deficits induced by 6-hydroxydopamine (6-OHDA) in a mouse model of PD. Before or after unilateral striatal 6-OHDA lesion induction, mice were administered magnolol subchronically; then the apomorphine-induced rotational behaviors of the hemiparkinsonian mice and tyrosine hydroxylase (TH) expression in striatum were determined. Magnolol that was administered 30 min before 6-OHDA lesion induction and then applied daily for 14 days significantly ameliorated apomorphine-induced contralateral rotation in 6-OHDA-lesioned mice, and consistently protected the decreased levels of TH protein expression in striatum. One week after termination of the 7-day subchronic pretreatment, magnolol also remarkably prevented the dopaminergic neuronal loss as identified by TH immunohistochemistry staining in striatum, associated with rotational behavioral protection in 6-OHDA-lesioned mice. Importantly, daily subchronic posttreatment with magnolol for 14 days efficiently reduced apomorphine-induced rotation, but did not restore the neuronal impairment in striatum damaged by 6-OHDA. Taken together, these findings suggest that magnolol may possess neuronal protective activity and behavioral restoration against 6-OHDA-induced toxicity in the PD model.


Asunto(s)
Compuestos de Bifenilo/administración & dosificación , Modelos Animales de Enfermedad , Lignanos/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Oxidopamina/toxicidad , Trastornos Parkinsonianos/prevención & control , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/enzimología , Cuerpo Estriado/patología , Esquema de Medicación , Masculino , Ratones , Oxidopamina/antagonistas & inhibidores , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Tirosina 3-Monooxigenasa/antagonistas & inhibidores , Tirosina 3-Monooxigenasa/metabolismo
20.
Neuroscience ; 472: 128-137, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34400248

RESUMEN

Ketamine, an N-methyl-d-aspartate receptor (NMDAR) blocker, is gaining ground as a treatment option for depression. The occurrence of persistent psychosis and cognitive impairment after repeated use of ketamine remains a concern. N, N-dimethylglycine (DMG) is a nutrient supplement and acts as an NMDAR glycine site partial agonist. The objective of this study was to assess whether DMG could potentially prevent the behavioral and synaptic deficits in mice after repeated ketamine exposure. Male ICR mice received ketamine (20 mg/kg) from postnatal day (PN) 33-46, twice daily, for 14 days. The locomotor activity, novel location recognition test (NLRT), novel object recognition test (NORT), social interaction test, head twitch response induced by serotonergic hallucinogen, and the basal synaptic transmission and long-term potentiation (LTP) in the hippocampal slices were monitored after repeated ketamine treatment. Furthermore, the protective effects of repeated combined administration of DMG (30 and 100 mg/kg) with ketamine on behavioral abnormalities and synaptic dysfunction were assessed. The results showed that mice exhibited memory impairments, social withdrawal, increased head twitch response, reduced excitatory synaptic transmission, and lower LTP after repeated ketamine exposure. The ketamine-induced behavioral and synaptic deficits were prevented by co-treatment with DMG. In conclusion, these findings may pave a new path forward to developing a combination formula with ketamine and DMG for the treatment of depression and other mood disorders.


Asunto(s)
Ketamina , Animales , Ketamina/toxicidad , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Endogámicos ICR , Receptores de N-Metil-D-Aspartato , Sarcosina/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA