Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neurobiol Dis ; 185: 106246, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37527762

RESUMEN

BACKGROUND: The blood-nerve and myelin barrier shield peripheral neurons and their axons. These barriers are sealed by tight junction proteins, which control the passage of potentially noxious molecules including proinflammatory cytokines via paracellular pathways. Peripheral nerve barrier breakdown occurs in various neuropathies, such as chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and traumatic neuropathy. Here, we studied the functional role of the tight junction protein claudin-12 in regulating peripheral nerve barrier integrity and CIDP pathogenesis. METHODS: Sections from sural nerve biopsies from 23 patients with CIDP and non-inflammatory idiopathic polyneuropathy (PNP) were analyzed for claudin-12 and -19 immunoreactivity. Cldn12-KO mice were generated and subjected to the chronic constriction injury (CCI) model of neuropathy. These mice were then characterized using a battery of barrier and behavioral tests, histology, immunohistochemistry, and mRNA/protein expression. In phenotype rescue experiments, the proinflammatory cytokine TNFα was neutralized with the anti-TNFα antibody etanercept; the peripheral nerve barrier was stabilized with the sonic hedgehog agonist smoothened (SAG). RESULTS: Compared to those without pain, patients with painful neuropathy exhibited reduced claudin-12 expression independently of fiber loss. Accordingly, global Cldn12-KO in male mice, but not fertile female mice, selectively caused mechanical allodynia associated with a leaky myelin barrier, increased TNFα, decreased sonic hedgehog (SHH), and loss of small axons accompanied by reduced peripheral myelin protein 22 (Pmp22). Other barriers and neurological functions remained intact. The Cldn12-KO phenotype could be rescued either by neutralizing TNFα with etanercept or stabilizing the barrier with SAG, which both also upregulated the Schwann cell barrier proteins Cldn19 and Pmp22. CONCLUSION: These results point to a critical role for claudin-12 in maintaining the myelin barrier presumably via Pmp22 and highlight restoration of the hedgehog pathway as a potential treatment strategy for painful inflammatory neuropathy.


Asunto(s)
Claudinas , Vaina de Mielina , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante , Animales , Femenino , Masculino , Ratones , Etanercept , Proteínas Hedgehog , Vaina de Mielina/patología , Dolor , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/patología , Proteínas de Uniones Estrechas/metabolismo , Humanos
2.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34576252

RESUMEN

The blood-nerve barrier and myelin barrier normally shield peripheral nerves from potentially harmful insults. They are broken down during nerve injury, which contributes to neuronal damage. Netrin-1 is a neuronal guidance protein with various established functions in the peripheral and central nervous systems; however, its role in regulating barrier integrity and pain processing after nerve injury is poorly understood. Here, we show that chronic constriction injury (CCI) in Wistar rats reduced netrin-1 protein and the netrin-1 receptor neogenin-1 (Neo1) in the sciatic nerve. Replacement of netrin-1 via systemic or local administration of the recombinant protein rescued injury-induced nociceptive hypersensitivity. This was prevented by siRNA-mediated knockdown of Neo1 in the sciatic nerve. Mechanistically, netrin-1 restored endothelial and myelin, but not perineural, barrier function as measured by fluorescent dye or fibrinogen penetration. Netrin-1 also reversed the decline in the tight junction proteins claudin-5 and claudin-19 in the sciatic nerve caused by CCI. Our findings emphasize the role of the endothelial and myelin barriers in pain processing after nerve damage and reveal that exogenous netrin-1 restores their function to mitigate CCI-induced hypersensitivity via Neo1. The netrin-1-neogenin-1 signaling pathway may thus represent a multi-target barrier protector for the treatment of neuropathic pain.


Asunto(s)
Netrina-1/metabolismo , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Barrera Hematonerviosa , Vaina de Mielina/química , Neuronas/metabolismo , Sistema Nervioso Periférico/metabolismo , Ratas , Ratas Wistar , Proteínas Recombinantes/química , Nervio Ciático/metabolismo , Transducción de Señal , Proteínas de Uniones Estrechas/metabolismo , Heridas y Lesiones
3.
Int J Mol Sci ; 21(1)2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31906086

RESUMEN

The nervous system is shielded by special barriers. Nerve injury results in blood-nerve barrier breakdown with downregulation of certain tight junction proteins accompanying the painful neuropathic phenotype. The dorsal root ganglion (DRG) consists of a neuron-rich region (NRR, somata of somatosensory and nociceptive neurons) and a fibre-rich region (FRR), and their putative epi-/perineurium (EPN). Here, we analysed blood-DRG barrier (BDB) properties in these physiologically distinct regions in Wistar rats after chronic constriction injury (CCI). Cldn5, Cldn12, and Tjp1 (rats) mRNA were downregulated 1 week after traumatic nerve injury. Claudin-1 immunoreactivity (IR) found in the EPN, claudin-19-IR in the FRR, and ZO-1-IR in FRR-EPN were unaltered after CCI. However, laser-assisted, vessel specific qPCR, and IR studies confirmed a significant loss of claudin-5 in the NRR. The NRR was three-times more permeable compared to the FRR for high and low molecular weight markers. NRR permeability was not further increased 1-week after CCI, but significantly more CD68+ macrophages had migrated into the NRR. In summary, NRR and FRR are different in naïve rats. Short-term traumatic nerve injury leaves the already highly permeable BDB in the NRR unaltered for small and large molecules. Claudin-5 is downregulated in the NRR. This could facilitate macrophage invasion, and thereby neuronal sensitisation and hyperalgesia. Targeting the stabilisation of claudin-5 in microvessels and the BDB barrier could be a future approach for neuropathic pain therapy.


Asunto(s)
Ganglios Espinales/metabolismo , Regulación de la Expresión Génica , Nociceptores/metabolismo , Dolor/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Proteínas de Uniones Estrechas/biosíntesis , Animales , Ganglios Espinales/patología , Masculino , Nociceptores/patología , Dolor/patología , Enfermedades del Sistema Nervioso Periférico/patología , Ratas , Ratas Wistar
4.
Cells ; 11(15)2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35954234

RESUMEN

Hypersensitivity to mechanical stimuli is a cardinal symptom of neuropathic and inflammatory pain. A reduction in spinal inhibition is generally considered a causal factor in the development of mechanical hypersensitivity after injury. However, the extent to which presynaptic inhibition contributes to altered spinal inhibition is less well established. Here, we used conditional deletion of GABAA in NaV1.8-positive sensory neurons (Scn10aCre;Gabrb3fl/fl) to manipulate selectively presynaptic GABAergic inhibition. Behavioral testing showed that the development of inflammatory punctate allodynia was mitigated in mice lacking pre-synaptic GABAA. Dorsal horn cellular circuits were visualized in single slices using stimulus-tractable dual-labelling of c-fos mRNA for punctate and the cognate c-Fos protein for dynamic mechanical stimulation. This revealed a substantial reduction in the number of cells activated by punctate stimulation in mice lacking presynaptic GABAA and an approximate 50% overlap of the punctate with the dynamic circuit, the relative percentage of which did not change following inflammation. The reduction in dorsal horn cells activated by punctate stimuli was equally prevalent in parvalbumin- and calretinin-positive cells and across all laminae I-V, indicating a generalized reduction in spinal input. In peripheral DRG neurons, inflammation following complete Freund's adjuvant (CFA) led to an increase in axonal excitability responses to GABA, suggesting that presynaptic GABA effects in NaV1.8+ afferents switch from inhibition to excitation after CFA. In the days after inflammation, presynaptic GABAA in NaV1.8+ nociceptors constitutes an "open gate" pathway allowing mechanoreceptors responding to punctate mechanical stimulation access to nociceptive dorsal horn circuits.


Asunto(s)
Hiperalgesia , Nociceptores , Animales , Adyuvante de Freund , Hiperalgesia/metabolismo , Inflamación/metabolismo , Ratones , Nociceptores/metabolismo , Ácido gamma-Aminobutírico
5.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1160-1169, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30625382

RESUMEN

The blood-nerve barrier (BNB) consisting of the perineurium and endoneurial vessels is sealed by tight junction proteins. BNB alterations are a crucial factor in the pathogenesis of peripheral neuropathies. However, barrier opening, e.g. by tissue plasminogen activator (tPA), can also facilitate topical application of analgesics. Here, we examined tPA both in the pathophysiology of neuropathy-induced BNB opening or via exogenous application and its effect on the cytoplasmatic tight junction protein anchoring protein, zona occludens-1 (ZO-1), the adherens molecule JAM-C and microRNA(miR)-155-5p. Specifically, we investigated whether tPA alone and barrier opening lead to pain behavioral changes, i.e. hyperalgesia, or whether these effects require further factors. Male Wistar rats underwent chronic constriction injury (CCI) or were treated by a single perisciatic application of recombinant (r)tPA. CCI elicited mechanical allodynia, tPA mRNA upregulation, macrophage invasion, BNB leakage for large molecule tracers, downregulation of ZO-1 and JAM-C mRNA/protein, and a loss of immunoreactivity of both in perineurium and endoneurial cells. Similarly, after perisciatic rtPA injection, ZO-1 and JAM-C mRNA as well as cytosolic/membrane protein and ZO-1 immunoreactivity were downregulated, and the BNB was opened. Neither mechanical hypersensitivity nor macrophage infiltration was observed after rtPA in contrast to CCI. Mechanistically, miR-155-5p, which is known to destabilize barriers and tight junction proteins like claudin-1 and ZO-1, was increased in CCI and to lesser extent after rtPA application. In summary, tPA transiently opens the BNB possibly via miR-155-5p. However, tPA does not provoke allodynia in the absence of a neuropathic stimulus like a ligation or inflammation.


Asunto(s)
Barrera Hematonerviosa/efectos de los fármacos , MicroARNs/genética , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Activador de Tejido Plasminógeno/farmacología , Regulación hacia Arriba/efectos de los fármacos , Animales , Barrera Hematonerviosa/metabolismo , Enfermedad Crónica , Constricción Patológica/complicaciones , Hiperalgesia/etiología , Hiperalgesia/genética , Hiperalgesia/prevención & control , Masculino , Neuralgia/etiología , Neuralgia/genética , Neuralgia/prevención & control , Enfermedades del Sistema Nervioso Periférico/etiología , Enfermedades del Sistema Nervioso Periférico/genética , Ratas Wistar , Proteínas Recombinantes/farmacología , Proteínas de Uniones Estrechas/efectos de los fármacos , Proteínas de Uniones Estrechas/genética , Activador de Tejido Plasminógeno/genética , Regulación hacia Arriba/genética
6.
Nat Commun ; 5: 5331, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25354791

RESUMEN

The gate control theory proposes the importance of both pre- and post-synaptic inhibition in processing pain signal in the spinal cord. However, although postsynaptic disinhibition caused by brain-derived neurotrophic factor (BDNF) has been proved as a crucial mechanism underlying neuropathic pain, the function of presynaptic inhibition in acute and neuropathic pain remains elusive. Here we show that a transient shift in the reversal potential (EGABA) together with a decline in the conductance of presynaptic GABAA receptor result in a reduction of presynaptic inhibition after nerve injury. BDNF mimics, whereas blockade of BDNF signalling reverses, the alteration in GABAA receptor function and the neuropathic pain syndrome. Finally, genetic disruption of presynaptic inhibition leads to spontaneous development of behavioural hypersensitivity, which cannot be further sensitized by nerve lesions or BDNF. Our results reveal a novel effect of BDNF on presynaptic GABAergic inhibition after nerve injury and may represent new strategy for treating neuropathic pain.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ganglios Espinales/metabolismo , Neuralgia/etiología , Nociceptores/metabolismo , Terminales Presinápticos/metabolismo , Receptores de GABA-A/metabolismo , Animales , Masculino , Ratones , Ratones Noqueados , Nocicepción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA