Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(26): 8063-8070, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888216

RESUMEN

The basal plane of transition metal dichalcogenides (TMDCs) is inert for the hydrogen evolution reaction (HER) due to its low-efficiency charge transfer kinetics. We propose a strategy of filling the van der Waals (vdW) layer with delocalized electrons to enable vertical penetration of electrons from the collector to the adsorption intermediate vertically. Guided by density functional theory, we achieve this concept by incorporating Cu atoms into the interlayers of tantalum disulfide (TaS2). The delocalized electrons of d-orbitals of the interlayered Cu can constitute the charge transfer pathways in the vertical direction, thus overcoming the hopping migration through vdW gaps. The vertical conductivity of TaS2 increased by 2 orders of magnitude. The TaS2 basal plane HER activity was extracted with an on-chip microcell. Modified by the delocalized electrons, the current density increased by 20 times, reaching an ultrahigh value of 800 mA cm-2 at -0.4 V without iR compensation.

2.
J Cell Mol Med ; 28(7): e18182, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38498903

RESUMEN

Chromosome instability (CIN) is a common contributor driving the formation and progression of anaplastic thyroid cancer (ATC), but its mechanism remains unclear. The BUB1 mitotic checkpoint serine/threonine kinase (BUB1) is responsible for the alignment of mitotic chromosomes, which has not been thoroughly studied in ATC. Our research demonstrated that BUB1 was remarkably upregulated and closely related to worse progression-free survival. Knockdown of BUB1 attenuated cell viability, invasion, migration and induced cell cycle arrests, whereas overexpression of BUB1 promoted the cell cycle progression of papillary thyroid cancer cells. BUB1 knockdown remarkably repressed tumour growth and tumour formation of nude mice with ATC xenografts and suppressed tumour metastasis in a zebrafish xenograft model. Inhibition of BUB1 by its inhibitor BAY-1816032 also exhibited considerable anti-tumour activity. Further studies showed that enforced expression of BUB1 evoked CIN in ATC cells. BUB1 induced CIN through phosphorylation of KIF14 at serine1292 (Ser1292 ). Overexpression of the KIF14ΔSer1292 mutant was unable to facilitate the aggressiveness of ATC cells when compared with that of the wild type. Collectively, these findings demonstrate that the BUB1/KIF14 complex drives the aggressiveness of ATC by inducing CIN.


Asunto(s)
Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Animales , Ratones , Humanos , Carcinoma Anaplásico de Tiroides/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ratones Desnudos , Pez Cebra/metabolismo , Inestabilidad Cromosómica , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Línea Celular Tumoral , Proteínas Oncogénicas/genética , Cinesinas/genética
3.
Inorg Chem ; 63(14): 6435-6444, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38537132

RESUMEN

Two novel six-membered perimidocarbene (PIC)-based tetradentate Pt(II) complexes were designed and successfully synthesized. Systematical experimental and theoretical studies suggest that the PIC moiety greatly affects the frontier orbitals, as well as the photophysical and excited-state properties of the Pt(II) complexes. PtYK2 has a broad emission spectrum peaking at 576 nm with a shoulder band at 620 nm, along with a full width at half-maximum (FWHM) value of 100.0 nm at 77 K in 2-MeTHF; however, the emission spectrum is slightly red-shifted with a dominant peak at 610 nm and a FWHM value of 125.0 nm at room temperature in a poly(methyl methacrylate) (PMMA) film. Time-dependent-density functional theory and natural transition orbital analyses reveal that PtYK2 has a 3LC (3πPIC* → πPIC)-dominated character with an unexpectedly negligible contribution of 3MLCT transition (0.68%) in the T1 state, which results in a broad emission spectrum and a relatively low quantum efficiency of 7.4% in the PMMA film.

4.
J Fluoresc ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520620

RESUMEN

We designed and synthesized a new Schiff base probe, which incorporated the salicylaldehyde-analogue α-cyanostilbene and benzophenone hydrazone by the imine linkage. Its chemical structure was verified by FT-IR, MALDI-TOF-MS, HR-MS and 1H/13C NMR technologies. It could exhibit a red fluorescence based on the synergistical effects of aggregation-induce emission (AIE), excited-state intramolecular proton transfer (ESIPT) and twisted intramolecular charge-transfer (TICT) in the aggregation or solid states. Interestingly, the TLC-based test strip loaded with the target compound showed the reversible fluorescence response to amine/acid vapor and on-site visual fluorescence quenching response to Fe3+. In THF/water mixtures (fw = 90%, 10 µM, pH = 7.4), the detection limit (DL) and the binding constant (Ka) of the developed probe towards Fe3+ were evaluated as 5.50 × 10- 8 M and 1.69 × 105, respectively. The developed probe was successfully applied for the detection of Fe3+ with practical, reliable, and satisfying results.

5.
Sensors (Basel) ; 24(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38400230

RESUMEN

Pedestrian navigation methods based on inertial sensors are commonly used to solve navigation and positioning problems when satellite signals are unavailable. To address the issue of heading angle errors accumulating over time in pedestrian navigation systems that rely solely on the Zero Velocity Update (ZUPT) algorithm, it is feasible to use the pedestrian's motion constraints to constrain the errors. Firstly, a human step length model is built using human kinematic data collected by the motion capture system. Secondly, we propose the bipedal constraint algorithm based on the established human step length model. Real field experiments demonstrate that, by introducing the bipedal constraint algorithm, the mean biped radial errors of the experiments are reduced by 68.16% and 50.61%, respectively. The experimental results show that the proposed algorithm effectively reduces the radial error of the navigation results and improves the accuracy of the navigation.


Asunto(s)
Pie , Peatones , Humanos , Algoritmos , Movimiento (Física) , Fenómenos Biomecánicos
6.
Small ; 19(17): e2207397, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36693782

RESUMEN

Low intrinsic conductivity and structural instability of MoS2 as an anode of sodium-ion batteries limit the liberation of its theoretical capacity. Herein, density functional theory simulations for the first time optimize MoS2 interlayer distance between 0.80 and 1.01 nm for sodium storage. 1-Butyl-3-methyl-imidazolium acetate ([BMIm]Ac) induces cellulose oligomers to intercalate MoS2 interlayers for achieving controllable distance by changing the mass ratio of cellulose to [BMIm]Ac. Based on these findings, porous carbon loading the interlayer-expanded MoS2 allowing Na+ to insert with fast kinetics is synthesized. A carbon layer derived from [BMIm]Ac and cellulose coating the composite prevents the MoS2 from contacting electrolytes, leading to less sulfur loss for a more reversible specific capacity. Meanwhile, MoS2 and carbon have a strong interfacial connection through MoN binding, contributing to enhanced structural stability. As expected, while cycling 250 times at 0.1 A g-1 , the MoS2 -porous carbon composite displays an optimal reversible capacity at 517.79 mAh g-1 as a sodium-ion batteries anode. The cyclic test of 1.0 A g-1 also shows considerable stability (310.74 mAh g-1 after 1000 cycles with 86.26% retentive capacity). This study will open up new possibilities of modifying MoS2 that serves as an applicable material as sodium-ion battery anode.

7.
Biomacromolecules ; 24(3): 1511-1521, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36802533

RESUMEN

Cellular functions of membrane proteins are strongly coupled to their structures and aggregation states in the cellular membrane. Molecular agents that can induce the fragmentation of lipid membranes are highly sought after as they are potentially useful for extracting membrane proteins in their native lipid environment. Toward this goal, we investigated the fragmentation of synthetic liposome using hydrophobe-containing polypeptoids (HCPs), a class of facially amphiphilic pseudo-peptidic polymers. A series of HCPs with varying chain lengths and hydrophobicities have been designed and synthesized. The effects of polymer molecular characteristics on liposome fragmentation are systemically investigated by a combination of light scattering (SLS/DLS) and transmission electron microscopy (cryo-TEM and negative stained TEM) methods. We demonstrate that HCPs with a sufficient chain length (DPn ≈ 100) and intermediate hydrophobicity (PNDG mol % = 27%) can most effectively induce the fragmentation of liposomes into colloidally stable nanoscale HCP-lipid complexes owing to the high density of local hydrophobic contact between the HCP polymers and lipid membranes. The HCPs can also effectively induce the fragmentation of bacterial lipid-derived liposomes and erythrocyte ghost cells (i.e., empty erythrocytes) to form nanostructures, highlighting the potential of HCPs as novel macromolecular surfactants toward the application of membrane protein extraction.


Asunto(s)
Liposomas , Polímeros , Liposomas/química , Membrana Celular/metabolismo , Polímeros/química , Proteínas de la Membrana , Lípidos/química , Interacciones Hidrofóbicas e Hidrofílicas
8.
Nano Lett ; 22(24): 10154-10162, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36512651

RESUMEN

Molecular functionalization has been intensely studied and artificially constructed to advance various electrocatalytic processes. While there is a widely approved charge-doping effect, the underlying action for reactant distribution/transport remains long neglected. Here an on-chip microdevice unravels that the proton enrichment effect at prototypical methylene blue (MB)/MoS2 interfaces rather than charge doping contributes to the hydrogen evolution reaction (HER) activity. Back-gated electrical/electrochemical tests detect quantitatively a strong charge injection from MB to MoS2 realized over diploid carrier density, but these excess carriers are unqualified for the actual enhanced HER activity (from 32 to 125 mA cm-2 at -0.29 V). On-chip electrochemical impedance further certifies that the proton enrichment in the vicinity of MoS2, which is generated by the nucleophilic group of MB, actually dominates the HER activity. This finding uncovers the leading function of molecular-linked catalysts.


Asunto(s)
Molibdeno , Protones , Sistemas de Liberación de Medicamentos , Impedancia Eléctrica , Electricidad , Hidrógeno , Azul de Metileno
9.
Mol Cancer ; 21(1): 190, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192735

RESUMEN

Anaplastic thyroid carcinoma (ATC) is an extremely malignant type of endocrine cancer frequently accompanied by extrathyroidal extension or metastasis through mechanisms that remain elusive. We screened for the CREB3 transcription-factor family in a large cohort, consisting of four microarray datasets. This revealed that CREB3L1 was specifically up regulated in ATC tissues and negatively associated with overall survival of patients with thyroid cancer. Consistently, high expression of CREB3L1 was negatively correlated with progression-free survival in an independent cohort. CREB3L1 knockdown dramatically attenuated invasion of ATC cells, whereas overexpression of CREB3L1 facilitated the invasion of papillary thyroid carcinoma (PTC) cells. Loss of CREB3L1 inhibited metastasis and tumor growth of ATC xenografts in zebrafish and nude mouse model. Single-cell RNA-sequencing analysis revealed that CREB3L1 expression gradually increased during the neoplastic progression of a thyroid follicular epithelial cell to an ATC cell, accompanied by the activation of the extracellular matrix (ECM) signaling. CREB3L1 knockdown significantly decreased the expression of collagen subtypes in ATC cells and the fibrillar collagen in xenografts. Due to the loss of CREB3L1, ATC cells were unable to activate alpha-smooth muscle actin (α-SMA)-positive cancer-associated fibroblasts (CAFs). After CREB3L1 knockdown, the presence of CAFs inhibited the growth of ATC spheroids and the metastasis of ATC cells. Further cytokine array screening showed that ATC cells activated α-SMA-positive CAFs through CREB3L1-mediated IL-1α production. Moreover, KPNA2 mediated the nuclear translocation of CREB3L1, thus allowing it to activate downstream ECM signaling. These results demonstrate that CREB3L1 maintains the CAF-like property of ATC cells by activating the ECM signaling, which remodels the tumor stromal microenvironment and drives the malignancy of ATC.


Asunto(s)
Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Actinas , Animales , Línea Celular Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Citocinas , Humanos , Ratones , Proteínas del Tejido Nervioso , ARN , Carcinoma Anaplásico de Tiroides/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Microambiente Tumoral , Pez Cebra
10.
Opt Express ; 30(11): 19544-19556, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36221728

RESUMEN

Quartz glass has a wide range of application and commercial value due to its high light transmittance and stable chemical and physical properties. However, due to the difference in the characteristics of the material itself, the adhesion between the metal micropattern and the glass material is limited. This is one of the main things that affect the application of glass surface metallization in the industry. In this paper, micropatterns on the surface of quartz glass are fabricated by a femtosecond laser-induced backside dry etching (fs-LIBDE) method to generate the layered composite structure and the simultaneous seed layer in a single-step. This is achieved by using fs-LIBDE technology with metal base materials (Stainless steel, Al, Cu, Zr-based amorphous alloys, and W) with different ablation thresholds, where atomically dispersed high threshold non-precious metals ions are gathered across the microgrooves. On account of the strong anchor effect caused by the layered composite structures and the solid catalytic effect that is down to the seed layer, copper micropatterns with high bonding strength and high quality, can be directly prepared in these areas through a chemical plating process. After 20-min of sonication in water, no peeling is observed under repeated 3M scotch tape tests and the surface was polished with sandpapers. The prepared copper micropatterns are 18 µm wide and have a resistivity of 1.96 µΩ·cm (1.67 µΩ·cm for pure copper). These copper micropatterns with low resistivity has been proven to be used for the glass heating device and the transparent atomizing device, which could be potential options for various microsystems.

11.
Langmuir ; 38(1): 320-331, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-34962819

RESUMEN

With an attempt to replace petroleum-derived commercial graphite (CG) with biomass-derived carbon, microcrystalline cellulose (MCC) dissolved in 1-butyl-3-methylimidazolium acetate (BMIMAcO) was facilely carbonized to prepare cellulose-derived carbon under a low-temperature range of 250-1600 °C. TEM and AFM results revealed structural evolution of carbon nanosheets starting from carbon dots. The XRD and Raman results showed that the degree of crystallinity of the MCC-derived carbon was apparently enhanced as the temperature was increased to 93.02% at 1600 °C, while the XPS results revealed that the nitrogen content was greatly reduced with increasing temperature. BMIMAcO not only induced low-temperature graphitization of MCC-derived carbon but also provided nitrogen doping for the carbon. Used as an anode of lithium-ion batteries (LIBs), the carbon synthesized at 750 °C showed the best cyclic stability and reversible capacity (1052.22 mAh g-1 at 0.5 A g-1 after 100 cycles and 1017.46 mAh g-1 at 1 A g-1 after 1000 cycles) compared to other MCC-derived carbon and CG. In addition, the costs of cellulose-derived carbon are much lower than those of the petroleum-derived graphite, showing environmental and economical merits for LIB anode production.

12.
Angew Chem Int Ed Engl ; 61(32): e202203522, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35452184

RESUMEN

Charge redistribution plays a prominent role in interpreting the intrinsic electrocatalytic mechanism. Establishing a quantitative relationship between the local charges and electrochemical performance can fundamentally update the design philosophies beyond conventional methods. We describe exertion of an external electric field in the cobalt phthalocyanine (CoPc)/MoS2 heterojunction to finely manipulate intermolecular charge transfer. The injected charges (e- ) from CoPc to MoS2 migrate to natural S vacancies and enhance Mo-H bonding. Moreover, the band gap of MoS2 and CoPc can be readily tuned by the electric field, verifying band engineering at the heterointerface. In situ photoluminescence spectra and gate-dependent electrochemical measurement reveal a linear correlation between the charge accumulation and hydrogen evolution reaction (HER) activity. This approach provides a new strategy for the design of catalysts, enabling precise regulation of the electronic configuration to improve catalytic activity.

13.
Sensors (Basel) ; 20(6)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213874

RESUMEN

This paper presents an evaluation of real-time kinematic (RTK)/Pseudolite/landmarks assistance heuristic drift elimination (LAHDE)/inertial measurement unit-based personal dead reckoning systems (IMU-PDR) integrated pedestrian navigation system for urban and indoor environments. Real-time kinematic (RTK) technique is widely used for high-precision positioning and can provide periodic correction to inertial measurement unit (IMU)-based personal dead reckoning systems (PDR) outdoors. However, indoors, where global positioning system (GPS) signals are not available, RTK fails to achieve high-precision positioning. Pseudolite can provide satellite-like navigation signals for user receivers to achieve positioning in indoor environments. However, there are some problems in pseudolite positioning field, such as complex multipath effect in indoor environments and integer ambiguity of carrier phase. In order to avoid the limitation of these factors, a local search method based on carrier phase difference with the assistance of IMU-PDR is proposed in this paper, which can achieve higher positioning accuracy. Besides, heuristic drift elimination algorithm with the assistance of manmade landmarks (LAHDE) is introduced to eliminate the accumulated error in headings derived by IMU-PDR in indoor corridors. An algorithm verification system was developed to carry out real experiments in a cooperation scene. Results show that, although the proposed pedestrian navigation system has to use human behavior to switch the positioning algorithm according to different scenarios, it is still effective in controlling the IMU-PDR drift error in multiscenarios including outdoor, indoor corridor, and indoor room for different people.


Asunto(s)
Algoritmos , Fenómenos Biomecánicos , Ciudades , Heurística , Humanos , Peatones
14.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(10): 1199-1203, 2020 Oct 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-33268581

RESUMEN

OBJECTIVES: To explore the value of three-dimensional fast gradient echo sequence (3D-GRE) in observation of the craniocervical junctional ligament. METHODS: A total of 21 healthy volunteers underwent 3D-GRE imaging. The imaging data was imported into the post-processing workstation. The structures of the ligaments in the craniocervical junctional area were observed and evaluated by multiplanar reconstruction technique. RESULTS: The features of ligaments in the craniocervical junction were shown clearly for all the 21 cases of volunteers. The scan time was 267-294 s. After the treatment with the three-dimensional reconstruction technique, the signal characteristics and the running structure of the transverse ligament, the alar ligament, the serrated ligament and the lamina could be effectively displayed. CONCLUSIONS: The 3D-GRE can evaluate the three-dimensional data of craniocervical junctional ligament in a short period of time. Post-processing reconstruction technique can clearly evaluate the structure characteristics of each ligament, which can lay a foundation for further application in craniocerebral trauma patients.


Asunto(s)
Diagnóstico por Imagen , Ligamentos Articulares , Humanos , Imagenología Tridimensional , Ligamentos Articulares/diagnóstico por imagen , Imagen por Resonancia Magnética
15.
Pharmacol Res ; 148: 104417, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31473343

RESUMEN

Intact epithelial barrier and mucosal immune system are crucial for maintaining intestinal homeostasis. Previous study indicated that Dendrobium officinale polysaccharides (DOPS) can regulate immune responses and inflammation to alleviate experimental colitis. However, it remains largely unknown whether DOPS can suppress AOM/DSS-induced colorectal cancer (CRC) model through its direct impact on intestinal barrier function and intestinal mucosal immunity. Here, we demonstrated the therapeutic action of DOPS for CRC model and further illustrated its underlying mechanisms. Treatment with 5-aminosalicylic acid (5-ASA) and DOPS significantly improved the clinical signs and symptoms of chronic colitis, relieve colon damage, suppress the formation and growth of colon tumor in CRC mice. Moreover, administration of DOPS effectively preserved the intestinal barrier function via reducing the loss of zonula occludens-1 (ZO-1) and occludin in adjacent tissues and carcinomatous tissues. Further studies demonstrated that DOPS improved the metabolic ability of tumor infiltrated CD8+ cytotoxic T lymphocytes (CTLs) and reduced the expression of PD-1 on CTLs to enhance the anti-tumor immune response in the tumor microenvironments (TME). Together, the conclusions indicated that DOPS restore intestinal barrier function and enhance intestinal anti-tumor immune response to suppress CRC, which may be a novel strategy for the prevention and treatment of CRC.


Asunto(s)
Antineoplásicos/farmacología , Carcinogénesis/efectos de los fármacos , Colon/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Dendrobium/química , Mucosa Intestinal/efectos de los fármacos , Polisacáridos/farmacología , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/metabolismo , Neoplasias Colorrectales/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Mesalamina/farmacología , Ratones , Ratones Endogámicos BALB C , Ocludina/metabolismo , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Proteína de la Zonula Occludens-1/metabolismo
16.
J Chem Inf Model ; 59(4): 1605-1623, 2019 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-30888812

RESUMEN

It has demonstrated that glycogen synthase kinase 3ß (GSK3ß) is related to Alzheimer's disease (AD). On the basis of the world largest traditional Chinese medicine (TCM) database, a network-pharmacology-based approach was utilized to investigate TCM candidates that can dock well with multiple targets. Support vector machine (SVM) and multiple linear regression (MLR) methods were utilized to obtain predicted models. In particular, the deep learning method and the random forest (RF) algorithm were adopted. We achieved R2 values of 0.927 on the training set and 0.862 on the test set with deep learning and 0.869 on the training set and 0.890 on the test set with RF. Besides, comparative molecular similarity indices analysis (CoMSIA) was performed to get a predicted model. All of the training models achieved good results on the test set. The stability of GSK3ß protein-ligand complexes was evaluated using 100 ns of MD simulation. Methyl 3- O-feruloylquinate and cynanogenin A induced both more compactness to the GSK3ß complex and stable conditions at all simulation times, and the GSK3ß complex also had no substantial fluctuations after a simulation time of 5 ns. For TCM molecules, we used the trained models to calculate predicted bioactivity values, and the optimum TCM candidates were obtained by ranking the predicted values. The results showed that methyl 3- O-feruloylquinate contained in Phellodendron amurense and cynanogenin A contained in Cynanchum atratum are capable of forming stable interactions with GSK3ß.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Biología Computacional/métodos , Aprendizaje Profundo , Medicina Tradicional China , Bases de Datos Farmacéuticas , Composición de Medicamentos , Glucógeno Sintasa Quinasa 3/química , Glucógeno Sintasa Quinasa 3/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Proteica , Mapas de Interacción de Proteínas , Relación Estructura-Actividad Cuantitativa , Máquina de Vectores de Soporte
17.
Langmuir ; 34(1): 273-283, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29227679

RESUMEN

Lack of deep understanding of nanoparticle (NP) actions at oil/water interface set an obstacle to practical applications of Pickering emulsions. Fluorescence labels fabricated by incorporation of carbon dots (CDs) into poly(N-isopropylacrylamide) (PNIPAM) matrix can not only mark the action of PNIPAM-based NPs in the interface but also reflect the colloidal morphologies of PNIPAM. In this work, we employed coaxial electrospraying for fabricating core-shell nanospheres of cellulose acetate encapsulated by PNIPAM, and facile incorporation of CDs in PNIPAM shells was achieved simultaneously. The coaxial electrosprayed NPs (CENPs) with temperature-dependent wettability can stabilize heptane and toluene in water at 25 °C, respectively, and reversible emulsion break can be triggered by temperature adjustment around the low critical solution temperature (LCST). Remarkably, CENP/CD composites exhibited a fluorescence "on-off" behavior because of the volume phase transition of the PNIPAM shell. CENP/CD composites in Pickering emulsions clearly elucidated the motions of CENPs in response to temperature changes. At temperatures below the LCST, the CENP concentration played an important role in surface coverage of oil droplets. Specifically, the CENP concentration above the minimum concentration for complete emulsification of oil phase led to high surface coverage and two-domain adsorption of CENPs at the interface including primary monolayer anchoring of CENPs on droplets surrounded by interconnected CENP networks, which contributed to the superior stability of the emulsions. Moreover, CENP/CD composites can be recycled with well-preserved core-shell structure and stable fluorescent properties, which offers their great potential applications in sensors and imaging.

18.
J Org Chem ; 83(1): 253-259, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29205044

RESUMEN

The decarbonylation of primary, secondary, and tertiary alkyl-substituted acyl radicals has been investigated through photoredox catalysis. A series of quaternary carbons and γ-ketoesters have been directly constructed by the photoredox 1,4-conjugate addition of the corresponding alkyl ketoacids with electrophilic alkenes. And, the tertiary alkyl ketoacids have proved to be good precursors of tertiary alkyl radicals.

19.
Artículo en Inglés | MEDLINE | ID: mdl-29553919

RESUMEN

Experiments were carried out to test the capacity for a laboratory-scale biofilter operated at an elevated temperature level (∼50°C) to remove an air stream containing ß-caryophyllene, a naturally occurring sesquiterpene of environmental concern emitted from wood-related industrial facilities. A water jacket was used to maintain high temperatures in a laboratory-scale biofilter. Inocula, pollutant loading and nutrient supply rate effects were evaluated over 84 days of biofilter operation. The start-up process took over two months when citrus peels were used as inocula while a relatively short start-up period was achieved after introducing forest compost products. While using a sparged-gas bioreactor to cultivate an enrichment culture for 97 days, removal efficiencies in excess of 80% were observed after 18 days. At empty bed contact times of 50 s and at a pollutant loading rate of 3.05 mg C/L/hr, removal efficiency levels reached 90% and the elimination capacity level reached 2.29 mg C/L/hr, corresponding to an elimination capacity of 2.60 mg ß-caryophyllene/L/hr. Collectively, these results demonstrate that ß-caryophyllene can be successfully removed from contaminated air using a biofilter operated at a high temperature (∼50°C), expanding the temperature range within which biofilters are known to biodegrade sesquiterpenes.


Asunto(s)
Filtración/métodos , Gases/aislamiento & purificación , Calor , Sesquiterpenos/aislamiento & purificación , Contaminación del Aire/prevención & control , Biodegradación Ambiental , Reactores Biológicos , Citrus/química , Filtración/instrumentación , Gases/química , Sesquiterpenos Policíclicos , Sesquiterpenos/química , Temperatura , Madera/química
20.
J Org Chem ; 82(1): 243-249, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-27959530

RESUMEN

A one-pot, three-component cascade reaction combining photoredox catalyzed radical addition and formal [3 + 2] annulation was developed. With this approach, highly concise syntheses of imidazoline and oxazolidine derivatives have been achieved. The advantages of this transformation are good to excellent yields, mild reaction conditions, operational simplicity, and easy accessibility of raw materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA