Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Metab Eng ; 58: 82-93, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31302223

RESUMEN

PHA, a family of natural biopolymers aiming to replace non-degradable plastics for short-term usages, has been developed to include various structures such as short-chain-length (scl) and medium-chain-length (mcl) monomers as well as their copolymers. However, PHA market has been grown slowly since 1980s due to limited variety with good mechanical properties and the high production cost. Here, we review most updated strategies or approaches including metabolic engineering, synthetic biology and morphology engineering on expanding PHA diversity, reducing production cost and enhancing PHA production. The extremophilic Halomonas spp. are taken as examples to show the feasibility and challenges to develop next generation industrial biotechnology (NGIB) for producing PHA more competitively.


Asunto(s)
Biotecnología , Halomonas , Microbiología Industrial , Ingeniería Metabólica , Polihidroxialcanoatos , Halomonas/química , Halomonas/genética , Halomonas/metabolismo , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/química , Polihidroxialcanoatos/genética
2.
Metab Eng ; 54: 117-126, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30959245

RESUMEN

Bacterial polyhydroxyalkanoates (PHA) are a family of intracellular polyester granules with sizes ranging from 100 to 500 nm. Due to their small sizes, it has been very difficult to separate the PHA granules from the bacterial broths. This study aims to engineer the PHA size control mechanism to obtain large PHA granular sizes beneficial for the separation. It has been reported that phasin (PhaP) is an amphiphilic protein located on the surface of PHA granules functioning to regulate sizes and numbers of PHA granules in bacterial cells, deletions on PhaPs result in reduced PHA granule number and enhanced granule sizes. Three genes phaP1, phaP2 and phaP3 encoding three PhaP proteins were deleted in various combinations in halophilic bacterium Halomonas bluephagenesis TD01. The phaP1-knockout strain generated much larger PHA granules with almost the same size as their producing cells without significantly affecting the PHA accumulation yet with a reduced PHA molecular weights. In contrast, the phaP2- and phaP3-knockout strains produced slightly larger sizes of PHA granules with increased PHA molecular weights. While PHA accumulation by phaP3-knockout strains showed a significant reduction. All of the PhaP deletion efforts could not form PHA granules larger than a normal size of H. bluephagenesis TD01. It appears that the PHA granular sizes could be limited by bacterial cell sizes. Therefore, genes minC and minD encoding proteins that block formation of cell fission rings (Z-rings) were over-expressed in various phaP deleted H. bluephagenesis TD01, resulting in large cell sizes of H. bluephagenesis TD01 containing PHA granules with sizes of up to 10 µm that has never been observed previously. It can be concluded that PHA granule sizes are limited by the cell sizes. By engineering a large cell morphology large PHA granules can be produced by PhaP deleted mutants.


Asunto(s)
Técnicas de Silenciamiento del Gen , Halomonas , Cuerpos de Inclusión , Ingeniería Metabólica , Polihidroxialcanoatos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Halomonas/genética , Halomonas/metabolismo , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/genética
3.
Metab Eng ; 54: 69-82, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30914380

RESUMEN

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a promising biopolyester with good mechanical properties and biodegradability. Large-scale production of PHBV is still hindered by the high production cost. CRISPR/Cas9 method was used to engineer the TCA cycle in Halomonas bluephagenesis on its chromosome for production of PHBV from glucose as a sole carbon source. Two TCA cycle related genes sdhE and icl encoding succinate dehydrogenase assembly factor 2 and isocitrate lysase were deleted, respectively, in H. bluephagenesis TD08AB containing PHBV synthesis genes on the chromosome, to channel more flux to increase the 3-hydroxyvalerate (3HV) ratio of PHBV. Due to a poor growth behavior of the mutant strains, H. bluephagenesis TY194 equipped with a medium strength Pporin-194 promoter was selected for further studies. The sdhE and/or icl mutant strains of H. bluephagenesis TY194 were constructed to show enhanced cell growth, PHBV synthesis and 3HV molar ratio. Gluconate was used to activate ED pathway and thus TCA cycle to increase 3HV content. H. bluephagenesis TY194 (ΔsdhEΔicl) was found to synthesize 17mol% 3HV in PHBV. Supported by the synergetic function of phosphoenolpyruvate carboxylase and Vitreoscilla hemoglobin encoded by genes ppc and vgb inserted into the chromosome of H. bluephagenesis TY194 (ΔsdhE) serving to enhance TCA cycle activity, a series of strains were generated that could produce PHBV containing 3-18mol% 3HV using glucose as a sole carbon source. Shake flask studies showed that H. bluephagenesis TY194 (ΔsdhE, G7::Pporin-ppc) produced 6.3 g/L cell dry weight (CDW), 65% PHBV in CDW and 25mol% 3HV in PHBV when grown in glucose and gluconate. 25mol% 3HV was the highest reported via chromosomal expression system. PHBV copolymers with different 3HV molar ratios were extracted and characterized. Next-generation industrial biotechnology (NGIB) based on recombinant H. bluephagenesis grown under unsterile and continuous conditions, allows production of P(3HB-0∼25mol% 3HV) in a convenient way with reduced production complexity and cost.


Asunto(s)
Cromosomas Bacterianos , Ciclo del Ácido Cítrico/genética , Ingeniería Genética , Halomonas , Poliésteres/metabolismo , Ácido 3-Hidroxibutírico/genética , Ácido 3-Hidroxibutírico/metabolismo , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , Halomonas/genética , Halomonas/metabolismo , Ácidos Pentanoicos/metabolismo
4.
Appl Microbiol Biotechnol ; 101(14): 5861-5867, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28620688

RESUMEN

Microbial polyhydroxyalkanoates (PHA) are a family of biopolyesters with properties similar to petroleum plastics such as polyethylene (PE) or polypropylene (PP). Polyhydroxybutyrate (PHB) is the most common PHA known so far. Clustered regularly interspaced short palindromic repeats interference (CRISPRi), a technology recently developed to control gene expression levels in eukaryotic and prokaryotic genomes, was employed to regulate PHB synthase activity influencing PHB synthesis. Recombinant Escherichia coli harboring an operon of three PHB synthesis genes phaCAB cloned from Ralstonia eutropha, was transformed with various single guided RNA (sgRNA with its guide sequence of 20-23 bases) able to bind to various locations of the PHB synthase PhaC, respectively. Depending on the binding location and the number of sgRNA on phaC, CRISPRi was able to control the phaC transcription and thus PhaC activity. It was found that PHB content, molecular weight, and polydispersity were approximately in direct and reverse proportion to the PhaC activity, respectively. The higher the PhaC activity, the more the intracellular PHB accumulation, yet the less the PHB molecular weights and the wider the polydispersity. This study allowed the PHB contents to be controlled in the ranges of 1.47-75.21% cell dry weights, molecular weights from 2 to 6 millions Dalton and polydispersity of 1.2 to 1.43 in 48 h shake flask studies. This result will be very important for future development of ultrahigh molecular weight PHA useful to meet high strength application requirements.


Asunto(s)
Sistemas CRISPR-Cas , Hidroxibutiratos/metabolismo , Polihidroxialcanoatos/biosíntesis , Aciltransferasas/genética , Aciltransferasas/metabolismo , Proteínas Bacterianas/genética , Clonación Molecular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Cupriavidus necator/química , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Escherichia coli/genética , Expresión Génica , Hidroxibutiratos/química , Peso Molecular , Operón , Polihidroxialcanoatos/química , ARN Guía de Kinetoplastida , Biología Sintética/métodos
6.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 37(1): 101-105, 2017 01.
Artículo en Zh | MEDLINE | ID: mdl-30695433

RESUMEN

Objective To observe the effects of Huatan Tongluo Recipe (HTTLR) on the proliferation of IL-ß p induced rheumatoid arthritis synovial fibroblast ( RASFB) and secretion of necrosis factor α (TNF-α) and acidic fibroblast growth factor (aFGF) in vitro. Methods RASFB cell line was cultured in vitro and stimulated by IL-1ß. The proliferation of RASFB was detected using WST-1 after adding IL-1ß with final concentrations of 1 , 5, 10, 20 µg/L for 24 and 48 h respectively. Then 20 µg/L IL-1ß recruited as induction dose was set up as IL-1ß group. High, middle, low dose HTTLR groups were set up by adding HT- TLR decoction with final concentration of 5%, 2%, 1% (V/V) , respectively for 24 and 48 h. A blank con- trol group was also set up. The proliferation rates were compared. Contents of TNF-α and aFGF were detected in each group using ELISA. mRNA expressions of TNF-α and aFGF were detected using RT-PCR. Results The proliferation rates of RASFB at 24 h and 48 h were lower at 1 µg/L IL-1 ß than at 5, 10, 20 µg/L IL-1ß (P <0. 01). The proliferation rate of RASFB was higher at 10 and 20 µg/L IL-1ß than at 5 µg/L IL-1ß (P <0. 01). Besides, the proliferation rate of RASFB was higher at 20 µg/L IL-1ß than at 10 µg/L IL-1 ß (P <0. 01). The proliferation rate of RASFB was higher at 48 h than at 24 h (P <0. 01). Com- pared with the high dose HTTLR group, the proliferation rate of RASFB was lowered in middle and low dose HTTLR groups (P <0. 01). Besides, IL-1ß induced proliferation rate of RASFB was obviously reduced in the middle dose HTTLR group (P <0. 01). Compared with the blank control group, mRNA ex- pressions of TNF-α and aFGF and their contents were elevated in the IL-1ß group at 24 and 48 h (P < 0. 05). Compared with the IL-1 ß group, mRNA expressions of TNF-α- and aFGF and their contents, except TNF-α- mRNA expression in the low dose HTTLR group at 24 h, were all obviously lowered in 3 dose HTTLR groups at 24 h and 48 h (P <0. 05). Compared with the high dose HTTLR group, mRNA expressions of TNF-(α and aFGF increased in middle and low dose HTTLR groups at 24 h and 48 h; TNF-α content in the low dose HTTLR group at 24 h; contents of TNF-α and aFGF in middle and low dose HTTLR groups at 24 h and 48 h all increased (P <0. 05). Conclusion The mechanism of HTTLR treatment for RA might be related to inhibiting RASFB proliferation, and decreasing mRNA expressions of TNF-α and aFGF as well as their protein secretion.


Asunto(s)
Artritis Reumatoide , Medicamentos Herbarios Chinos , Factor de Necrosis Tumoral alfa , Artritis Reumatoide/tratamiento farmacológico , Proliferación Celular , Medicamentos Herbarios Chinos/farmacología , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Humanos , Interleucina-1beta , Factor de Necrosis Tumoral alfa/metabolismo
8.
Metab Eng ; 29: 160-168, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25838211

RESUMEN

Clustered regularly interspaced short palindromic repeats interference (CRISPRi) is used to edit eukaryotic genomes. Here, we show that CRISPRi can also be used for fine-tuning prokaryotic gene expression while simultaneously regulating multiple essential gene expression with less labor and time consumption. As a case study, CRISPRi was used to control polyhydroxyalkanoate (PHA) biosynthesis pathway flux and to adjust PHA composition. A pathway was constructed in Escherichia coli for the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from glucose. The native gene sad encoding E. coli succinate semi-aldehyde dehydrogenase was expressed under the control of CRISPRi using five specially designed single guide RNAs (sgRNAs) for regulating carbon flux to 4-hydroxybutyrate (4HB) biosynthesis. The system allowed formation of P(3HB-co-4HB) consisting of 1-9mol% 4HB. Additionally, succinate, generated by succinyl-coA synthetase and succinate dehydrogenase (respectively encoded by genes sucC, sucD and sdhA, sdhB) was channeled preferentially to the 4HB precursor by using selected sgRNAs such as sucC2, sucD2, sdhB2 and sdhA1 via CRISPRi. The resulting 4HB content in P(3HB-co-4HB) was found to range from 1.4 to 18.4mol% depending on the expression levels of down-regulated genes. The results show that CRISPRi is a feasible method to simultaneously manipulate multiple genes in E. coli.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas de Escherichia coli , Escherichia coli , Hidroxibutiratos/metabolismo , Ingeniería Metabólica , Poliésteres/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética
9.
Metab Eng ; 29: 189-195, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25842374

RESUMEN

Poly(3-hydroxypropionate) (P3HP) is the strongest family member of microbial polyhydroxyalkanoates (PHA) synthesized by bacteria grown on 1,3-propandiol or glycerol. In this study synthesis pathways of P3HP and its copolymer P3HB3HP of 3-hydroxybutyrate (3HB) and 3-hydroxypropionate (3HP) were assembled respectively to allow their synthesis from glucose, a more abundant carbon source. Recombinant Escherichia coli was constructed harboring the P3HP synthetic pathway consisting of heterologous genes encoding glycerol-3-phosphate dehydrogenase (gpd1), glycerol-3-P phosphatase (gpp2) from Saccharomyces cerevisiae that catalyzes formation of glycerol from glucose, and genes coding glycerol dehydratase (dhaB123) with its reactivating factors (gdrAB) from Klebsiella pneumoniae that transfer glycerol to 3-hydroxypropionaldehyde, as well as gene encoding propionaldehyde dehydrogenase (pdup) from Salmonella typhimurium which converts 3-hydroxypropionaldehyde to 3-hydroxypropionyl-CoA, together with the gene of PHA synthase (phaC) from Ralstonia eutropha which polymerizes 3-hydroxypropionyl-CoA into P3HP. When phaA and phaB from Ralstonia eutropha respectively encoding ß-ketothiolase and acetoacetate reductase, were introduced into the above P3HP producing recombinant E. coli, copolymers poly(3-hydroxybutyrate-co-3-hydroxypropionate) (P3HB3HP) were synthesized from glucose as a sole carbon source. The above E. coli recombinants grown on glucose LB medium successfully produced 5g/L cell dry weight containing 18% P3HP and 42% P(3HB-co-84mol% 3HP), respectively, in 48h shake flask studies.


Asunto(s)
Proteínas Bacterianas , Cupriavidus necator/genética , Escherichia coli , Glucosa/metabolismo , Hidroxibutiratos/metabolismo , Ingeniería Metabólica , Poliésteres/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Cupriavidus necator/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosa/genética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética
10.
Microb Cell Fact ; 14: 18, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25896825

RESUMEN

BACKGROUND: With the rapid development of synthetic biology, the demand for assembling multiple DNA (genes) fragments into a large circular DNA structure in one step has dramatically increased. However, for constructions of most circular DNA, there are two contradictions in the ligation/assembly and transformation steps. The ligation/assembly consists of two different reactions: 1) the ligation/assembly between any two pieces of a linear form DNA; 2) the cyclization (or self-ligation) of a single linear form DNA. The first contradiction is that the bimolecular ligation/assembly requires a higher DNA concentration while the cyclization favors a lower one; the second contradiction is that a successful transformation of a ligation/assembly product requires a relatively high DNA concentration again. This study is the first attempt to use linear plasmid and Cyclization After Transformation (CAT) strategy to neutralize those contradictions systematically. RESULTS: The linear assembly combined with CAT method was demonstrated to increase the overall construction efficiency by 3-4 times for both the traditional ligation and for the new in vitro recombination-based assembly methods including recombinant DNA, Golden Gate, SLIC (Sequence and Ligation Independent Cloning) and Gibson Isothermal Assembly. Finally, the linear assembly combined with CAT method was successfully applied to assemble a pathway of 7 gene fragments responsible for synthesizing precorrin 3A which is an important intermediate in VB12 production. CONCLUSION: The linear assembly combined with CAT strategy method can be regarded as a general strategy to enhance the efficiency of most existing circular DNA construction technologies and could be used in construction of a metabolic pathway consisting of multiple genes.


Asunto(s)
ADN Circular/genética , ADN/metabolismo , Redes y Vías Metabólicas/genética , Ciclización
11.
Metab Eng ; 26: 34-47, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25217798

RESUMEN

The halophile Halomonas TD01 and its derivatives have been successfully developed as a low-cost platform for the unsterile and continuous production of chemicals. Therefore, to increase the genetic engineering stability of this platform, the DNA restriction/methylation system of Halomonas TD01 was partially inhibited. In addition, a stable and conjugative plasmid pSEVA341 with a high-copy number was constructed to contain a LacI(q)-Ptrc system for the inducible expression of multiple pathway genes. The Halomonas TD01 platform, was further engineered with its 2-methylcitrate synthase and three PHA depolymerases deleted within the chromosome, resulting in the production of the Halomonas TD08 strain. The overexpression of the threonine synthesis pathway and threonine dehydrogenase made the recombinant Halomonas TD08 able to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV consisting of 4-6 mol% 3-hydroxyvalerate or 3 HV, from various carbohydrates as the sole carbon source. The overexpression of the cell division inhibitor MinCD during the cell growth stationary phase in Halomonas TD08 elongated its shape to become at least 1.4-fold longer than its original size, resulting in enhanced PHB accumulation from 69 wt% to 82 wt% in the elongated cells, further promoting gravity-induced cell precipitations that simplify the downstream processing of the biomass. The resulted Halomonas strains contributed to further reducing the PHA production cost.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Mejoramiento Genético/métodos , Halomonas/fisiología , Ingeniería Metabólica/métodos , Polihidroxialcanoatos/metabolismo , Treonina/genética , Oxidorreductasas de Alcohol/metabolismo , Análisis Costo-Beneficio , Polihidroxialcanoatos/genética , Proteínas Recombinantes/metabolismo , Treonina/metabolismo
12.
Metab Eng ; 23: 78-91, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24566041

RESUMEN

Genetic engineering of Halomonas spp. was seldom reported due to the difficulty of genetic manipulation and lack of molecular biology tools. Halomonas TD01 can grow in a continuous and unsterile process without other microbial contaminations. It can be therefore exploited for economic production of chemicals. Here, Halomonas TD01 was metabolically engineered using the gene knockout procedure based on markerless gene replacement stimulated by double-strand breaks in the chromosome. When gene encoding 2-methylcitrate synthase in Halomonas TD01 was deleted, the conversion efficiency of propionic acid to 3-hydroxyvalerate (3HV) monomer fraction in random PHBV copolymers of 3-hydroxybutyrate (3HB) and 3HV was increased from around 10% to almost 100%, as a result, cells were grown to accumulate 70% PHBV in dry weight (CDW) consisting of 12mol% 3HV from 0.5g/L propionic acid in glucose mineral medium. Furthermore, successful deletions on three PHA depolymerases eliminate the possible influence of PHA depolymerases on PHA degradation in the complicated industrial fermentation process even though significant enhanced PHA content was not observed. In two 500L pilot-scale fermentor studies lasting 70h, the above engineered Halomonas TD01 grew to 112g/L CDW containing 70wt% P3HB, and to 80g/L CDW with 70wt% P(3HB-co-8mol% 3HV) in the presence of propionic acid. The cells grown in shake flasks even accumulated close to 92% PHB in CDW with a significant increase of glucose to PHB conversion efficiency from around 30% to 42% after 48h cultivation when pyridine nucleotide transhydrogenase was overexpressed. Halomonas TD01 was also engineered for producing a PHA regulatory protein PhaR which is a robust biosurfactant.


Asunto(s)
Halomonas , Ingeniería Metabólica/métodos , Poliésteres/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Silenciamiento del Gen , Halomonas/genética , Halomonas/metabolismo
13.
Appl Microbiol Biotechnol ; 98(21): 8987-97, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25070598

RESUMEN

Since halophile Halomonas spp. can grow contamination free in seawater under unsterile and continuous conditions, it holds great promise for industrial biotechnology to produce low-cost chemicals in an economic way. Yet, metabolic engineering methods are urgently needed for Halomonas spp. It is commonly known that chromosomal expression is more stable yet weaker than plasmid one is. To overcome this challenge, a novel chromosomal expression method was developed for halophile Halomonas TD01 and its derivatives based on a strongly expressed porin gene as a site for external gene integration. The gene of interest was inserted downstream the porin gene, forming an artificial operon porin-inserted gene. This chromosome expression system was proven functional by some examples: First, chromosomal expression of heterologous polyhydroxybutyrate (PHB) synthase gene phaC Re from Ralstonia eutropha completely restored the PHB accumulation level in endogenous phaC knockout mutant of Halomonas TD01. The integrated phaC Re was expressed at the highest level when inserted at the locus of porin compared with insertions in other chromosome locations. Second, an inducible expression system was constructed in phaC-deleted Halomonas TD01 by integrating the lac repressor gene (lacI) into the porin site in the host chromosome. The native porin promoter was inserted with the key 21 bp DNA of lac operator (lacO) sequence to become an inducible promoter encoded in a plasmid. This inducible system allowed on-off switch of gene expression in Halomonas TD strains. Thus, the stable and strong chromosomal expression method in Halomonas TD spp. was established.


Asunto(s)
Expresión Génica , Vectores Genéticos , Halomonas/genética , Halomonas/metabolismo , Ingeniería Metabólica/métodos , Operón , Porinas/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Cupriavidus necator/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Represoras Lac/genética , Represoras Lac/metabolismo , Plásmidos
14.
Metab Eng ; 17: 23-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23466419

RESUMEN

3-Hydroxyalkanoic acids (3HA) are precious precursors for synthesis of value added chemicals. According to their carbon chain lengths, 3HA can be divided into two groups: short-chain-length (SCL) 3HA consisting of 3-5 carbon atoms and medium-chain-length (MCL) 3HA containing 6-14 carbon atoms. To produce MCL 3HA, a metabolic engineered pathway expressing tesB gene, a thioesterase encoding gene that has been reported to catalyze acyl-CoA to free fatty acids, was constructed in Pseudomonas entomophila L48. When tesB of Escherichia coli encoding thioesterase II was introduced into polyhydroxyalkanoate (PHA) synthase and ß-oxidation pathway deleted mutant of P. entomophila LAC31 derived from wild type P. entomophila L48, 6.65g/l 3-hydroxytetradecanoic acid (3HTD) and 4.6g/l 3-hydroxydodecanoic acid (3HDD) were obtained, respectively, when tetradecanoic acid or dodecanoic acid as related carbon sources was added in shake flask cultures. Moreover, 1.8g/l of 3-hydroxydecanoic (3HD) acid was also produced by P. entomophila LAC31 harboring PTE1 gene cloned from Saccharomyces cerevisiae using corresponding fatty acid decanoic acid. Interestingly, shake flask studies indicated that PTE1 harboring strain showed advantages over tesB expressing one for 3HDD and 3HD production, while tesB favored 3HTD production by P. entomophila LAC31. For the first time our study revealed that fine chemicals 3HTD, 3HDD or 3HD could be efficiently produced by metabolic engineered ß-oxidation in Pseudomonas spp grown on related fatty acids.


Asunto(s)
Eliminación de Gen , Mejoramiento Genético/métodos , Hidroxiácidos/metabolismo , Operón/genética , Oxidorreductasas/metabolismo , Pseudomonas/enzimología , Pseudomonas/genética , Hidroxiácidos/química , Hidroxiácidos/aislamiento & purificación , Ingeniería Metabólica/métodos , Peso Molecular , Oxidación-Reducción , Oxidorreductasas/genética , Pseudomonas/clasificación , Especificidad de la Especie
15.
Int J Mol Sci ; 15(1): 250-60, 2013 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-24378850

RESUMEN

The DNA repair gene X-ray cross-complementary group 4 (XRCC4), an important caretaker of the overall genome stability, is thought to play a major role in human tumorigenesis. We investigated the association between an important polymorphic variant of this gene at codon 247 (rs373409) and diffusely infiltrating astrocytoma (DIA) risk and prognosis. This hospital-based case-control study investigated this association in the Guangxi population. In total, 242 cases with DIA and 358 age-, sex-, and race-matched healthy controls were genotyped using TaqMan-PCR technique. We found a significant difference in the frequency of XRCC4 genotypes between cases and controls. Compared with the homozygote of XRCC4 codon 247 Ala alleles (XRCC4-AA), the genotypes of XRCC4 codon 247 Ser alleles (namely XRCC4-AS or -SS) increased DIA risk (odds ratios [OR], 1.82 and 2.89, respectively). Furthermore, XRCC4 polymorphism was correlated with tumor dedifferentiation of DIA (r = 0.261, p < 0.01). Additionally, this polymorphism modified the overall survival of DIA patients (the median survival times were 26, 14, and 8 months for patients with XRCC4-AA, -AS, and -SS, respectively). Like tumor grade, XRCC4 codon 247 polymorphism was an independent prognostic factor influencing the survival of DIA. These results suggest that XRCC4 codon 247 polymorphism may be associated with DIA risk and prognosis among the Guangxi population.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Proteínas de Unión al ADN/genética , Polimorfismo de Nucleótido Simple , Adulto , Factores de Edad , Anciano , Alelos , Astrocitoma/diagnóstico , Astrocitoma/mortalidad , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/mortalidad , Estudios de Casos y Controles , Codón , Proteínas de Unión al ADN/metabolismo , Femenino , Frecuencia de los Genes , Genotipo , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Factores de Riesgo
16.
Biol Chem ; 393(7): 641-6, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22944668

RESUMEN

Human islet amyloid polypeptide (hIAPP) shows an antimicrobial activity towards two types of clinically relevant bacteria. The potency of hIAPP varies with its aggregation states. Circular dichroism was employed to determine the interaction between hIAPP and bacteria lipid membrane mimic. The antimicrobial activity of each aggregate species is associated with their ability to induce membrane disruption. Our findings provide new evidence revealing the antimicrobial activity of amyloid peptide, which suggest a possible connection between amyloid peptides and antimicrobial peptides.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Polipéptido Amiloide de los Islotes Pancreáticos/farmacología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Antiinfecciosos/química , Antiinfecciosos/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Multimerización de Proteína , Estructura Secundaria de Proteína , Staphylococcus aureus/citología , Staphylococcus aureus/efectos de los fármacos
17.
Metab Eng ; 14(5): 496-503, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22842473

RESUMEN

Recombinant Escherichia coli was constructed for co-production of hydrogen and polyhydroxybutyrate (PHB) due to its rapid growth and convenience of genetic manipulation. In particular, anaerobic metabolic pathways dedicated to co-production of hydrogen and PHB were established due to the advantages of directing fluxes away from toxic compounds such as formate and acetate to useful products. Here, recombinant E. coli expressing hydrogenase 3 and/or acetyl-CoA synthetase showed improved PHB and hydrogen production when grown with or without acetate as a carbon source. When hydrogenase 3 was over-expressed, hydrogen yield was increased from 14 to 153 mmol H(2)/mol glucose in a mineral salt (MS) medium with glucose as carbon source, accompanied by an increased PHB yield from 0.55 to 5.34 mg PHB/g glucose in MS medium with glucose and acetate as carbon source.


Asunto(s)
Acetato CoA Ligasa , Proteínas de Escherichia coli , Escherichia coli , Hidrógeno/metabolismo , Hidrogenasas , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Acetato CoA Ligasa/biosíntesis , Acetato CoA Ligasa/genética , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Expresión Génica , Hidrogenasas/biosíntesis , Hidrogenasas/genética , Ingeniería Metabólica/métodos
18.
Metab Eng ; 14(4): 317-24, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22561235

RESUMEN

Copolyesters of 3-hydroxypropionate (3HP) and 4-hydroxybutyrate (4HB), abbreviated as P(3HP-co-4HB), was synthesized by Escherichia coli harboring a synthetic pathway consisting of five heterologous genes including orfZ encoding 4-hydroxybutyrate-coenzyme A transferase from Clostridium kluyveri, pcs' encoding the ACS domain of tri-functional propionyl-CoA ligase (PCS) from Chloroflexus aurantiacus, dhaT and aldD encoding dehydratase and aldehyde dehydrogenase from Pseudomonas putida KT2442, and phaC1 encoding PHA synthase from Ralstonia eutropha. When grown on mixtures of 1,3-propanediol (PDO) and 1,4-butanediol (BDO), compositions of 4HB in microbial P(3HP-co-4HB) were controllable ranging from 12 mol% to 82 mol% depending on PDO/BDO ratios. Nuclear magnetic resonance (NMR) spectra clearly indicated the polymers were random copolymers of 3HP and 4HB. Their mechanical and thermal properties showed obvious changes depending on the monomer ratios. Morphologically, P(3HP-co-4HB) films only became fully transparent when monomer 4HB content was around 67 mol%. For the first time, P(3HP-co-4HB) with adjustable monomer ratios were produced and characterized.


Asunto(s)
Ingeniería Metabólica/métodos , Poliésteres/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Butileno Glicoles/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Coenzima A Transferasas/genética , Coenzima A Transferasas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroliasas/genética , Hidroliasas/metabolismo , Glicoles de Propileno/metabolismo
19.
Microb Cell Fact ; 11: 130, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22978778

RESUMEN

BACKGROUND: Microbial polyhydroxyalkanoates (PHA) are biopolyesters consisting of diverse monomers. PHA synthase PhaC2Ps cloned from Pseudomonas stutzeri 1317 is able to polymerize short-chain-length (scl) 3-hydroxybutyrate (3HB) monomers and medium-chain-length (mcl) 3-hydroxyalkanoates (3HA) with carbon chain lengths ranging from C6 to C12. However, the scl and mcl PHA production in Escherichia coli expressing PhaC2Ps is limited with very low PHA yield. RESULTS: To improve the production of PHA with a wide range of monomer compositions in E. coli, a series of optimization strategies were applied on the PHA synthase PhaC2Ps. Codon optimization of the gene and mRNA stabilization with a hairpin structure were conducted and the function of the optimized PHA synthase was tested in E. coli. The transcript was more stable after the hairpin structure was introduced, and western blot analysis showed that both codon optimization and hairpin introduction increased the protein expression level. Compared with the wild type PhaC2Ps, the optimized PhaC2Ps increased poly-3-hydroxybutyrate (PHB) production by approximately 16-fold to 30% of the cell dry weight. When grown on dodecanoate, the recombinant E. coli harboring the optimized gene phaC2PsO with a hairpin structure in the 5' untranslated region was able to synthesize 4-fold more PHA consisting of 3HB and medium-chain-length 3HA compared to the recombinant harboring the wild type phaC2Ps. CONCLUSIONS: The levels of both PHB and scl-mcl PHA in E. coli were significantly increased by series of optimization strategies applied on PHA synthase PhaC2Ps. These results indicate that strategies including codon optimization and mRNA stabilization are useful for heterologous PHA synthase expression and therefore enhance PHA production.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Aciltransferasas/genética , Proteínas Bacterianas/genética , Hidroxibutiratos/metabolismo , Mutación , Poliésteres/metabolismo , Polihidroxialcanoatos/biosíntesis , Pseudomonas stutzeri/enzimología , ARN Mensajero/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
20.
Microb Cell Fact ; 11: 54, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22550959

RESUMEN

BACKGROUND: Poly(4-hydroxybutyrate) [poly(4HB)] is a strong thermoplastic biomaterial with remarkable mechanical properties, biocompatibility and biodegradability. However, it is generally synthesized when 4-hydroxybutyrate (4HB) structurally related substrates such as γ-butyrolactone, 4-hydroxybutyrate or 1,4-butanediol (1,4-BD) are provided as precursor which are much more expensive than glucose. At present, high production cost is a big obstacle for large scale production of poly(4HB). RESULTS: Recombinant Escherichia coli strain was constructed to achieve hyperproduction of poly(4-hydroxybutyrate) [poly(4HB)] using glucose as a sole carbon source. An engineering pathway was established in E. coli containing genes encoding succinate degradation of Clostridium kluyveri and PHB synthase of Ralstonia eutropha. Native succinate semialdehyde dehydrogenase genes sad and gabD in E. coli were both inactivated to enhance the carbon flux to poly(4HB) biosynthesis. Four PHA binding proteins (PhaP or phasins) including PhaP1, PhaP2, PhaP3 and PhaP4 from R. eutropha were heterologously expressed in the recombinant E. coli, respectively, leading to different levels of improvement in poly(4HB) production. Among them PhaP1 exhibited the highest capability for enhanced polymer synthesis. The recombinant E. coli produced 5.5 g L(-1) cell dry weight containing 35.4% poly(4HB) using glucose as a sole carbon source in a 48 h shake flask growth. In a 6-L fermentor study, 11.5 g L(-1) cell dry weight containing 68.2% poly(4HB) was obtained after 52 h of cultivation. This was the highest poly(4HB) yield using glucose as a sole carbon source reported so far. Poly(4HB) was structurally confirmed by gas chromatographic (GC) as well as (1)H and (13)C NMR studies. CONCLUSIONS: Significant level of poly(4HB) biosynthesis from glucose can be achieved in sad and gabD genes deficient strain of E. coli JM109 harboring an engineering pathway encoding succinate degradation genes and PHB synthase gene, together with expression of four PHA binding proteins PhaP or phasins, respectively. Over 68% poly(4HB) was produced in a fed-batch fermentation process, demonstrating the feasibility for enhanced poly(4HB) production using the recombinant strain for future cost effective commercial development.


Asunto(s)
Escherichia coli/metabolismo , Glucosa/metabolismo , Poliésteres/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Clostridium kluyveri/metabolismo , Cupriavidus necator/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fermentación , Redes y Vías Metabólicas , Plásmidos/genética , Plásmidos/metabolismo , Poliésteres/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Succionato-Semialdehído Deshidrogenasa/genética , Succionato-Semialdehído Deshidrogenasa/metabolismo , Ácido Succínico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA