RESUMEN
Public health studies indicate that artificial light is a high-risk factor for metabolic disorders. However, the neural mechanism underlying metabolic modulation by light remains elusive. Here, we found that light can acutely decrease glucose tolerance (GT) in mice by activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) innervating the hypothalamic supraoptic nucleus (SON). Vasopressin neurons in the SON project to the paraventricular nucleus, then to the GABAergic neurons in the solitary tract nucleus, and eventually to brown adipose tissue (BAT). Light activation of this neural circuit directly blocks adaptive thermogenesis in BAT, thereby decreasing GT. In humans, light also modulates GT at the temperature where BAT is active. Thus, our work unveils a retina-SON-BAT axis that mediates the effect of light on glucose metabolism, which may explain the connection between artificial light and metabolic dysregulation, suggesting a potential prevention and treatment strategy for managing glucose metabolic disorders.
Asunto(s)
Tejido Adiposo Pardo , Hipotálamo , Ratones , Animales , Humanos , Tejido Adiposo Pardo/metabolismo , Hipotálamo/metabolismo , Termogénesis/fisiología , Retina , Células Ganglionares de la Retina , Glucosa/metabolismoRESUMEN
Polybrominated diphenyl ethers (PBDEs) are widely used as flame-retardant additives. But the application of PBDEs has been challenged due to their toxicity, especially neurotoxicity. In this study, we investigated the effects of decabrominated diphenyl ether (PBDE 209), the major PBDEs product, on voltage-gated sodium channels (VGSCs) in primary cultured rat hippocampal neurons. Employing the whole-cell patch-clamp technique, we found that PBDE 209 could irreversibly decrease voltage-gated sodium channel currents (I(Na)) in a very low dose and in a concentration-dependent manner. We had systematically explored the effects of PBDE 209 on I(Na) and found that PBDE 209 could shift the activation and inactivation of I(Na) toward hyperpolarizing direction, slow down the recovery from inactivation of I(Na), and decrease the fraction of activated sodium channels. These results suggested that PBDE 209 could affect VGSCs, which may lead to changes in electrical activities and contribute to neurotoxicological damages. We also showed that ascorbic acid, as an antioxidant, was able to mitigate the inhibitory effects of PBDE 209 on VGSCs, which suggested that PBDE 209 might inhibit I(Na) through peroxidation. Our findings provide new insights into the mechanism for the neurological symptoms caused by PBDE 209.
Asunto(s)
Éteres Difenilos Halogenados/toxicidad , Hipocampo/efectos de los fármacos , Activación del Canal Iónico , Neuronas/efectos de los fármacos , Canales de Sodio/efectos de los fármacos , Animales , Hipocampo/citología , Hipocampo/metabolismo , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Canales de Sodio/metabolismo , Técnicas de Cultivo de TejidosRESUMEN
BACKGROUND: More and more people are suffering from depression in modern society. It is believed that the development of depression results from alterations in synaptic transmission, especially in the hippocampus. Animal experiments and clinical studies have demonstrated that retinoids are essential components in hippocampal synaptic plasticity, and they have a close relationship with depression. However, it is still unclear how excessive retinoic acid (RA) causes depression and what synaptic and molecular mechanisms underlie it. METHODS: Behavioral, electrophysiological, and molecular approaches were employed to characterize the effects of RA on depression and synaptic plasticity. RA was continuously administered intracerebroventricularly through an osmotic pump. RESULTS: RA treatment induced depression-like behaviors, as evidenced by decreased sucrose preference and increased immobile duration in both the forced swim test and the tail suspension test. RA administration also induced anxiety-like behaviors, indicated by decreased duration in the open arms of the elevated plus maze and the central of the open field. RA treatment decreased the neuronal excitability of the hippocampus either by changing the excitatory/inhibitory receptor balance or by promoting the synthesis of inhibitory neurotransmitters. Moreover, long-term potentiation was decreased in both the excitatory postsynaptic potential and the population spike in RA-treated rats, presumably a consequence of the reduced glur1 transcript level. LIMITATIONS: The mechanism of how excess RA affects the hippocampal gene expression and synaptic plasticity requires further study. CONCLUSIONS: RA treatment can induce depression-like behavior in rats and impair hippocampal plasticity. Thus, improving synaptic plasticity in the hippocampus may ameliorate the affective disorders caused by excessive RA.
Asunto(s)
Depresión , Tretinoina , Animales , Depresión/inducido químicamente , Modelos Animales de Enfermedad , Hipocampo , Plasticidad Neuronal , Ratas , Transmisión Sináptica , Tretinoina/efectos adversosRESUMEN
Besides generating vision, light modulates various physiological functions, including mood. While light therapy applied in the daytime is known to have anti-depressive properties, excessive light exposure at night has been reportedly associated with depressive symptoms. The neural mechanisms underlying this day-night difference in the effects of light are unknown. Using a light-at-night (LAN) paradigm in mice, we showed that LAN induced depressive-like behaviors without disturbing the circadian rhythm. This effect was mediated by a neural pathway from retinal melanopsin-expressing ganglion cells to the dorsal perihabenular nucleus (dpHb) to the nucleus accumbens (NAc). Importantly, the dpHb was gated by the circadian rhythm, being more excitable at night than during the day. This indicates that the ipRGCâdpHbâNAc pathway preferentially conducts light signals at night, thereby mediating LAN-induced depressive-like behaviors. These findings may be relevant when considering the mental health effects of the prevalent nighttime illumination in the industrial world.
Asunto(s)
Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Depresión/fisiopatología , Luz/efectos adversos , Vías Visuales/fisiología , Animales , Depresión/etiología , Habénula/fisiología , Habénula/efectos de la radiación , Ratones , Núcleo Accumbens/fisiología , Núcleo Accumbens/efectos de la radiación , Células Ganglionares de la Retina/fisiología , Células Ganglionares de la Retina/efectos de la radiación , Vías Visuales/efectos de la radiaciónRESUMEN
Lead is a well-known toxin in the environment that causes severe damage to the nervous system. Gastrodin is the main bioactive component of Tian ma ( GASTRODIA ELATA Bl.), which is a traditional herbal medicine widely used in eastern Asia. Increasing lines of evidence show that gastrodin has diverse effects, especially neuroprotective effects. In the present study, we investigated whether gastrodin supplementation can rescue impairments of synaptic plasticity produced by developmental lead exposure. We examined three electrophysiological parameters of synaptic plasticity: input/output (I/O) function, paired-pulse facilitation (PPF), and long-term potentiation (LTP) of field excitatory postsynaptic potential (fEPSP) in the hippocampal CA1 region of rats on postnatal day 22 (P22). Our results showed that lead exposure significantly impaired synaptic plasticity in the hippocampal CA1 region and that gastrodin can effectively rescue these lead-induced impairments. Therefore, gastrodin may have potential therapeutic value for lead-induced impairments during human developmental stages.
Asunto(s)
Alcoholes Bencílicos/farmacología , Glucósidos/farmacología , Hipocampo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Animales , Potenciales Postsinápticos Excitadores , Femenino , Hipocampo/fisiología , Masculino , Ratas , Ratas WistarRESUMEN
Lead is putatively regarded as an environmental neurotoxicant. Long-term low-level lead exposure causes cognitive deficits, but the mechanism remains to be elucidated. In the present study, the excitatory effects of low-level lead exposure on action potential (AP) firing of pyramidal neurons in CA1 region of rat hippocampal slices and the pathway through which lead induced these effects were studied with conventional whole-cell recording. Low-level lead (0.5 and 5 microM) exposure did not significantly change either voltage threshold or amplitude, duration, rise time, or rising velocity of single AP; conversely, 5 microM lead exposure significantly increased AP firing rates and reduced spike frequency adaptation. These excitatory effects of 5 microM lead were blocked by mibefradil, a selective blocker of T-type voltage-dependent calcium channels (VDCC), but not by verapamil and omega-conotoxin, selective blockers of L-type and N-type VDCC, respectively. Five micromolar lead could not change the excitability of pyramidal neurons when slices were perfused with calcium-free ACSF. In addition, the effects were abolished by inhibitors of two intracellular calcium release channels: 2-APB, an inhibitor of inositol trisphosphate receptors, and dantrolene, an inhibitor of ryanodine receptors, but not by thapsigargin, an inhibitor of endoplasmic reticulum calcium uptake. These results provide evidence for excitatory neurotoxicity of low-level lead exposure, contribution of T-type VDCC in the entrance of lead into neurons, and a possible involvement of calcium flux alteration during APs in this excitatory neurotoxicity.
Asunto(s)
Potenciales de Acción/efectos de los fármacos , Hipocampo/efectos de los fármacos , Intoxicación del Sistema Nervioso por Plomo/fisiopatología , Plomo/toxicidad , Neurotoxinas/toxicidad , Células Piramidales/efectos de los fármacos , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/efectos de los fármacos , Canales de Calcio Tipo T/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Relación Dosis-Respuesta a Droga , Sustancias Peligrosas/toxicidad , Hipocampo/metabolismo , Hipocampo/fisiopatología , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inhibidores , Masculino , Mibefradil/farmacología , Técnicas de Cultivo de Órganos , Células Piramidales/metabolismo , Ratas , Ratas Wistar , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacosRESUMEN
Lead (Pb(2+)) exposure in children can induce long-lasting deficits in cognitive function and has been modeled in experimental animals. Based on previous studies which demonstrated that S-adenosyl-l-methionine (SAM) is beneficial in the treatment of lead intoxication, here, we asked the question if SAM treatment could rescue the impaired cognition and synaptic plasticity induced by lead. Rats drank 1500 ppm lead acetate (PbAc) solution or distilled water throughout gestation and lactation. After weaning at postnatal day 22, one half of the control and lead-exposed male offspring were intraperitoneally injected 20 mg SAM/kg daily over a period of 20-22 days. Electrophysiological and Morris water maze test were performed at 44-54 days of age. The result showed that the impaired learning ability induced by lead could be improved significantly by SAM. Furthermore, our results revealed that long-term potentiation (LTP) of excitatory postsynaptic potential and population spike impairments induced by lead were also ameliorated by SAM treatment.
Asunto(s)
Conducta Animal/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Compuestos Organometálicos/toxicidad , Efectos Tardíos de la Exposición Prenatal , S-Adenosilmetionina/farmacología , Sinapsis/efectos de los fármacos , Factores de Edad , Animales , Cognición/efectos de los fármacos , Contaminantes Ambientales/sangre , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Hipocampo/crecimiento & desarrollo , Inyecciones Intraperitoneales , Lactancia , Masculino , Memoria/efectos de los fármacos , Compuestos Organometálicos/sangre , Embarazo , Ratas , Ratas Wistar , S-Adenosilmetionina/administración & dosificaciónRESUMEN
Increasing evidence suggests that lead (Pb) produces impairments partly through oxidative stress. Though many researchers have investigated protective effect of some antioxidant nutrients against Pb toxicity, little information is available about the effect of antioxidants on Pb-induced impairment of synaptic plasticity. Quercetin, a strong antioxidant and radical scavenger, is the representative natural flavonoid molecule abundant in fruits and vegetables. Previous studies have found that quercetin was neuroprotective in many cases. This study was designed to evaluate the effect of quercetin on chronic Pb exposure-induced impairment of synaptic plasticity in adult rat dentate gyrus (DG) area in vivo. The input/output (I/O) functions, paired-pulse reactions (PPR), excitatory postsynaptic potential (EPSP), and population spike (PS) amplitude were measured in the DG area of different groups of rats in response to stimulation applied to the lateral perforant path. The results showed that the depressed I/O, PPR, and long-term potentiation (LTP) of Pb-exposed group were significantly increased by quercetin treatment. In addition, hippocampal Pb concentration was partially reduced after quercetin treatment. These findings suggest that quercetin treatment could relieve chronic Pb exposure-induced impairment of synaptic plasticity and might be a potential therapeutic intervention to cure cognitive deficits induced by Pb.
Asunto(s)
Antioxidantes/farmacología , Intoxicación por Plomo/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Quercetina/farmacología , Animales , Giro Dentado/efectos de los fármacos , Giro Dentado/fisiopatología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Plomo/metabolismo , Plomo/toxicidad , Intoxicación por Plomo/fisiopatología , Masculino , Plasticidad Neuronal/efectos de los fármacos , Ratas , Ratas Wistar , Sinapsis/efectos de los fármacos , Sinapsis/metabolismoRESUMEN
(-)-Epigallocatechin-3-gallate (EGCG), the main active component of green tea, is commonly known for its beneficial properties at low doses. On the other hand, little is known about the adverse effects of EGCG. Voltage-gated sodium channel (VGSC) is responsible for both initiation and propagation of action potentials of the neurons in the hippocampus and throughout the central nervous system (CNS). In this study, the effects of EGCG on voltage-gated sodium channel currents (I(Na)) were investigated in rat primary cultures of hippocampal CA1 neurons via the conventional whole-cell patch-clamp technique. We found that I(Na) was not affected by EGCG at the concentration of 0.1microM, but was completely blocked by EGCG at the concentration of 400microM and higher, and EGCG reduced the amplitudes of I(Na) in a concentration-dependent manner in the range of 0.1-400microM. Furthermore, our results also showed that at the concentration of 100microM, EGCG was known to have the following performances: (1) it decreased the activation threshold and the voltage at which the maximum I(Na) current was evoked, caused negative shifts of I(Na) steady-state activation curve. (2) It enlarged I(Na) tail-currents. (3) It induced a left shift of the steady-state inactivation. (4) It reduced fraction of available sodium channels. (5) It delayed the activation of I(Na) in a voltage-dependent manner. (6) It prolonged the time course of the fast inactivation of sodium channels. (7) It accelerated the activity-dependent attenuation of I(Na). On the basis of these findings, we propose that EGCG could impair certain physiological functions of VGSCs, which may contribute, directly or indirectly, to EGCG's effects in CNS.
Asunto(s)
Catequina/análogos & derivados , Hipocampo/citología , Neuronas/metabolismo , Agonistas de los Canales de Sodio , Animales , Animales Recién Nacidos , Catequina/farmacología , Células Cultivadas , Interpretación Estadística de Datos , Relación Dosis-Respuesta a Droga , Electrofisiología , Hipocampo/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismoRESUMEN
Cadmium (Cd(2+)) is a common pollutant that causes a wide variety of toxic effects on the central nervous system. However, the mechanism of Cd(2+) neurotoxicity remains to be elucidated. In the present study, we examined the effects of Cd(2+) on AMPA receptor-mediated synaptic transmission and short-term synaptic plasticity in hippocampal CA1 area, using whole-cell patch clamp technique. Cd(2+) significantly inhibited the peak amplitude of evoked EPSCs (eEPSCs) in a concentration-dependent manner and enhanced the short-term synaptic plasticity including paired-pulse facilitation and frequency facilitation. Cd(2+) also decreased the frequency and amplitude of spontaneous EPSCs (sEPSCs) but had no effect on those of miniature EPSCs (mEPSCs). These effects of Cd(2+) may involve a presynaptic mechanism of blockade of action potential-sensitive, calcium-dependent release of glutamate. In addition, Cd(2+) prolonged the decay time of both sEPSCs and mEPSCs, which suggested a postsynaptic action site of Cd(2+). This study demonstrates that Cd(2+) impairs the Schaffer collateral-commissural-CA1 glutamatergic synaptic transmission and short-term plasticity in rat hippocampal slices, which may be a possible contributing mechanism for the Cd(2+)-induced neurotoxic effects.
Asunto(s)
Cloruro de Cadmio/toxicidad , Contaminantes Ambientales/toxicidad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/efectos de los fármacos , Receptores AMPA/metabolismo , Animales , Calcio/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiología , Técnicas In Vitro , Plasticidad Neuronal/efectos de los fármacos , Ratas , Ratas Wistar , Factores de TiempoRESUMEN
OBJECTIVE: To explore the effects of S-adenosyl-L-methionine (SAM) on blood lead concentration and oxidative stress of tissue in prenatal and postnatal lead-exposed rats, and evaluate the potential reparation exerted by SAM on paired-pulse facilitation (PPF) and long-term potentiation (LTP) in lead-exposed rat. METHODS: Pregnant Wistar rats were randomly divided into three groups: control, lead-exposed and lead-exposed with SAM treatment groups. Lead-exposed rats drank 1.5 g/L lead acetate solution through pregnancy until weaning and then the pups received 20 mg/kg SAM or saline daily intraperitoneally depending on their group. Control group rats drank tap water throughout the experiment. At the postnatal 44-60 days, all the pup rats were given an extracellular recording measured in dentate gyrus (DG) area of hippocampus. The blood lead concentration and oxidative stress in liver, brain and hippocampus were also detected. RESULTS: The blood lead concentration in lead-exposed group was higher (159. 3 +/- 10. 9 microg/L) in comparing with those of control group (27.5 +/-3.8 microg/L) and lead +SAM group (33.1 +/-9.5 microg/L) (F=213.5, P<0.01). A significant recovery of liver, brain glutathione (GSH) and malondialdehyde (MDA) level was clearly produced in lead-exposed rats after SAM treatment (P <0.05). Chronic lead exposure during development impaired LTP measured on field excitatory postsynaptic potential (EPSP) [(112 +/-2.1)%] compared with control rats [(131+/-4.5)%] and the impaired LTP could be significantly increased by SAM treatment [(120 +/- 2.6)%] (F = 26. 1, P <0. 05). CONCLUSION: SAM might be beneficial for treatment of lead intoxication, especially in the rescue of learning and memory impairment induced by lead and should deserve more detailed research.
Asunto(s)
Intoxicación por Plomo/prevención & control , Potenciación a Largo Plazo/efectos de los fármacos , Exposición Materna/prevención & control , S-Adenosilmetionina/farmacología , Animales , Encéfalo/metabolismo , Femenino , Glutatión/biosíntesis , Plomo/sangre , Masculino , Embarazo , Ratas , Ratas WistarRESUMEN
BACKGROUND: Previous study has demonstrated that dietary taurine supplement protected rats from impairments of synaptic plasticity induced by postnatal lead exposure. However, little is known about the role of taurine in the presence of prenatal and perinatal lead exposure. We investigated the possible effect of taurine supplement on prenatal and perinatal lead-induced synaptic plasticity deficit and determined developmental periods critical for the effect of taurine. RESULTS: In the present study, taurine was administrated to prenatal and perinatal lead-exposed rats in different developmental periods: from prenatal to weaning (Lead+PW-Tau), from weaning to life (Lead+WL-Tau), and from prenatal to life (Lead+PL-Tau). We examined the input-output (I/O) function, paired-pulse facilitation (PPF) and the long-term potentiation (LTP) of field excitatory postsynaptic potential (fEPSP) in the hippocampal CA1 area of rats on postnatal days 18-25 (P18-25) or days 60-75 (P60-75). We found that (1) on P18-25, taurine had no evident effect on I/O functions and PPF ratios of lead-exposed rats but caused a 12.0% increase in the LTP amplitudes of these animals; (2) on P60-75, taurine significantly elevated lead depressed I/O functions and PPF ratios in Lead+PW-Tau and Lead+PL-Tau rats, but failed in Lead+WL-Tau rats. The amplitudes of LTP of lead-exposed rats were all significantly increased by additional taurine supplement in any developmental period compared with untreated rats. Thus, taurine appeared to have the most effect during the prenatal and lactation periods and its effects on younger rats would not be manifest until the adult life; and (3) the level of lead deposition in hippocampus was evidently reduced by additional treatment of taurine in lead-exposed rats, compared with untreated rats. CONCLUSION: Taurine supplement can protect the adult rats from synaptic plasticity deficits following prenatal and perinatal lead exposure, and the protective effects are critical for the prenatal and lactation periods of lead-exposed rats.
Asunto(s)
Hipocampo/efectos de los fármacos , Hipocampo/embriología , Plomo/administración & dosificación , Plomo/toxicidad , Plasticidad Neuronal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Taurina/farmacología , Animales , Animales Recién Nacidos , Suplementos Dietéticos , Desarrollo Embrionario/efectos de los fármacos , Femenino , Hipocampo/citología , Plomo/análisis , Potenciación a Largo Plazo/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Wistar , Sinapsis/fisiologíaRESUMEN
A growing number of research results demonstrate that copper is an important trace element to life. In this study, whole-cell recording made from acutely dissociated rat hippocampal CA1 neurons was employed to investigate the actions of copper (Cu(2+)) on the delayed rectifier K(+) currents (I(K)). External application of various concentrations of Cu(2+) (1-1000microM) reduced the amplitude of I(K) in a dose-dependent manner with an IC(50) value of 100microM and a Hill coefficient of 0.4. 300microM of Cu(2+) depolarized the I(K) activation curves by 12.5mV and hyperpolarized the I(K) state-inactivation curves by 17.4mV, respectively. At this concentration, Cu(2+) also significantly increased the value of the fast decay time constant (tau(1)), but had no effect on the I(K) recovery from inactivation. These results suggest that relevant concentrations of copper at physiological and pathological level can influence the neuronal excitability of rat hippocampal CA1 neurons by voltage-gated delayed rectifier K(+) channels, and such actions are likely involved in the pathophysiology of Cu-related Wilson's disease.
Asunto(s)
Cobre/farmacología , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Hipocampo/citología , Neuronas/efectos de los fármacos , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Potenciales de la Membrana/efectos de los fármacos , Neuronas/citología , RatasRESUMEN
The bed nucleus of the stria terminalis (BST) plays an important role in integrating and relaying input information to other brain regions in response to stress. The cytoarchitecture of the BST in tree shrews (Tupaia belangeri chinensis) has been comprehensively described in our previous publications. However, the inputs to the BST have not been described in previous reports. The aim of the present study was to investigate the sources of afferent projections to the BST throughout the brain of tree shrews using the retrograde tracer Fluoro-Gold (FG). The present results provide the first detailed whole-brain mapping of BST-projecting neurons in the tree shrew brain. The BST was densely innervated by the prefrontal cortex, entorhinal cortex, ventral subiculum, amygdala, ventral tegmental area, and parabrachial nucleus. Moreover, moderate projections to the BST originated from the medial preoptic area, supramammillary nucleus, paraventricular thalamic nucleus, pedunculopontine tegmental nucleus, dorsal raphe nucleus, locus coeruleus, and nucleus of the solitary tract. Afferent projections to the BST are identified in the ventral pallidum, nucleus of the diagonal band, ventral posteromedial thalamic nucleus, posterior complex of the thalamus, interfascicular nucleus, retrorubral field, rhabdoid nucleus, intermediate reticular nucleus, and parvicellular reticular nucleus. In addition, the different densities of BST-projecting neurons in various regions were analyzed in the tree shrew brains. In summary, whole-brain mapping of direct inputs to the BST is delineated in tree shrews. These brain circuits are implicated in the regulation of numerous physiological and behavioral processes including stress, reward, food intake, and arousal.
Asunto(s)
Núcleos Septales/anatomía & histología , Tupaiidae/anatomía & histología , Vías Aferentes/anatomía & histología , Animales , Inmunohistoquímica , Masculino , Técnicas de Trazados de Vías Neuroanatómicas , Trazadores del Tracto Neuronal , Fotomicrografía , EstilbamidinasRESUMEN
Aluminium (Al), has the potential to be neurotoxic in humans and animals, and is present in many manufactured foods and medicines and is also added to drinking water for purification purposes. Our previous study demonstrated that chronic Al exposure induced deficits of both long-term potentiation (LTP) and long-term depression (LTD) of excitatory postsynaptic potential (EPSP) and population spike (PS) in rat dentate gyrus (DG) of hippocampus in vivo (Wang et al., 2001). The purpose of the present study was to investigate whether the Al-induced impairment of synaptic plasticity could be reversed by dietary supplementation with vitamin E (Vit E; alpha-tocopherol). Neonatal Wistar rats were exposed to Al from parturition throughout life by drinking 0.3% aluminium chloride (AlCl3) solution or a diet supplemented with Vit E at 500 microg/g/day with 0.3% AlCl3. The input/output (I/O) function, EPSP and PS were measured in DG area of adult rats (80-100 days of age) in response to stimulation applied to the lateral perforant path. The results showed that: (1) chronic Al exposure reduced the amplitudes of both EPSP LTP (control: 130.4+/-3%, n=7; Al-exposed: 110+/-2%, n=9, P<0.001) and PS LTP (control: 241+/-19%, n=7; Al-exposed: 130+/-7%, n=9, P<0.001) significantly. Vit E had no significant effects on the Al-induced deficits of EPSP LTP (Al-exposed: 110+/-2%, n=9; Al-exposed+Vit E: 112+/-2%, n=8, P>0.05) and PS LTP (Al-exposed: 130+/-7%, n=9; Al-exposed+Vit E: 129+/-4%, n=8; P>0.05); (2) the amplitudes of EPSP LTD (control: 84+/-4%, n=7; Al-exposed: 92+/-7%, n=9, P<0.01) and PS LTD (control: 81+/-4%, n=7; Al-exposed: 98+/-5%, n=9, P<0.001) were also decreased by Al treatment. The impaired EPSP LTD (Al-exposed: 92+/-7%, n=9; Al-exposed+Vit E: 93+/-4%, n=8, P>0.05) and PS LTD (Al-exposed: 98+/-5%, n=9; Al-exposed+Vit E: 94+/-6%, n=8, P>0.05) were also not significantly affected by Vit E treatment. It was suggested that dietary supplementation with Vit E did not reverse the impairment of synaptic plasticity induced by Al in DG in vivo.
Asunto(s)
Aluminio/toxicidad , Giro Dentado/patología , Plasticidad Neuronal/efectos de los fármacos , Vitamina E/farmacología , Animales , Giro Dentado/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Masculino , Ratas , Ratas Wistar , Purificación del Agua , Abastecimiento de AguaRESUMEN
BACKGROUND: Recent studies have shown that the biological actions and toxicity of the water-soluble compound, polyhydroxyfullerene (fullerenol), are related to the concentrations present at a particular site of action. This study investigated the effects of different concentrations of fullerenol on cultured rat hippocampal neurons. METHODS AND RESULTS: Fullerenol at low concentrations significantly enhanced hippocampal neuron viability as tested by MTT assay and Hoechst 33342/propidium iodide double stain detection. At high concentrations, fullerenol induced apoptosis confirmed by Comet assay and assessment of caspase proteins. CONCLUSION: These findings suggest that fullerenol promotes cell death and protects against cell damage, depending on the concentration present. The concentration-dependent effects of fullerenol were mainly due to its influence on the reduction-oxidation pathway.
Asunto(s)
Fulerenos/farmacología , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Aldehídos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa , Relación Dosis-Respuesta a Droga , Fulerenos/toxicidad , Glutatión/metabolismo , Hipocampo/citología , Plomo/toxicidad , Neuronas/citología , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/toxicidad , Neurotoxinas/farmacología , Neurotoxinas/toxicidad , Estrés Oxidativo , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismoRESUMEN
Lead (Pb(2+)) is one of the most common neurotoxic metals present in our environment. Chronic or acute exposure to Pb(2+) causes impairment to the central nervous system (CNS). As one potent useful tool in the attempt to protect against impairment and promote functional recovery of the CNS, gangliosides are hopeful for recovering Pb(2+) neurotoxicity. The aim of this study is to investigate the effects of monosialoganglioside (GM1) on the Pb(2+)-induced impairments of synaptic plasticity, antioxidant system function, and intracellular calcium levels in the hippocampus of acute Pb(2+)-exposed rats. Our study showed that: (1) Acute Pb(2+) exposure impaired synaptic transmission and plasticity in the hippocampus and GM1 preconditioning rescued to some extent this impairment in urethane-anesthetized rats. (2) Superoxide dismutase activities and malondialdehyde levels were significantly increased in the acute Pb(2+)-exposed hippocampus which could be reduced by GM1 preconditioning. (3) Further, acute Pb(2+) exposure caused the internal free Ca(2+) fluctuation in the cultured hippocampal neurons and GM1 preconditioning could abate this fluctuation. Taken together, our results illustrated the possible mechanisms underlying the protective effects of GM1 against Pb(2+) neurotoxicity and might shed light on protection against Pb(2+) toxicity and its treatment.
Asunto(s)
Gangliósido G(M1)/uso terapéutico , Hipocampo/efectos de los fármacos , Intoxicación del Sistema Nervioso por Plomo/prevención & control , Potenciación a Largo Plazo/efectos de los fármacos , Malondialdehído/metabolismo , Compuestos Organometálicos/toxicidad , Superóxido Dismutasa/metabolismo , Animales , Calcio/metabolismo , Femenino , Gangliósido G(M1)/farmacología , Hipocampo/enzimología , Hipocampo/metabolismo , Hipocampo/fisiopatología , Intoxicación del Sistema Nervioso por Plomo/enzimología , Intoxicación del Sistema Nervioso por Plomo/metabolismo , Intoxicación del Sistema Nervioso por Plomo/fisiopatología , Masculino , Compuestos Organometálicos/farmacocinética , Ratas , Ratas WistarRESUMEN
Epigallocatechin-3-gallate (EGCG), a catechin polyphenols component, is the main ingredient of green tea extract. It has been reported that EGCG is a potent antioxidant and beneficial in oxidative stress-related diseases, but others and our previous study showed that EGCG has pro-oxidant effects at high concentration. Thus, in this study, we tried to examine the possible pathway of EGCG-induced cell death in cultures of rat hippocampal neurons. Our results showed that EGCG caused a rapid elevation of intracellular free calcium levels ([Ca(2+)](i)) in a dose-dependent way. Exposure to EGCG dose- and time-dependently increased the production of reactive oxygen species (ROS) and reduced mitochondrial membrane potential (Deltapsi(m)) as well as the Bcl-2/Bax expression ratio. Importantly, acetoxymethyl ester of 5,5'-dimethyl-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, ethylene glycol-bis-(2-aminoethyl)-N,N,N',N'-tetraacetic acid, and vitamin E could attenuate EGCG-induced apoptotic responses, including ROS generation, mitochondrial dysfunction, and finally partially prevented EGCG-induced cell death. Furthermore, treatment of hippocampal neurons with EGCG resulted in an elevation of caspase-3 and caspase-9 activities with no significant accompaniment of lactate dehydrogenase release, which provided further evidence that apoptosis was the dominant mode of EGCG-induced cell death in cultures of hippocampal neurons. Taken together, these findings indicated that EGCG induced hippocampal neuron death through the mitochondrion-dependent pathway.
Asunto(s)
Calcio/metabolismo , Catequina/análogos & derivados , Hipocampo/metabolismo , Neuronas/metabolismo , Estrés Oxidativo/fisiología , Animales , Catequina/farmacología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiologíaRESUMEN
Several recent reports implicate an important role played by c-Jun N-terminal kinases (JNKs) in long-term potentiation (LTP). However, little is known about how the isoforms of JNKs participate in synaptic plasticity. Here we showed that short-term synaptic plasticity was impaired in the hippocampal area CA1 of JNK1-deficient (JNK1-/-) mice; these mice showed normal LTP in response to a strong tetanus and no alteration of N-methyl-D-aspartate receptor-dependent long-term depression (LTD) in the hippocampus. However, LTD induced either by group I metabotropic glutamate receptors (mGluRs) agonist dihydroxyphenylglycine or by paired-pulse low-frequency stimulation was absent in both the JNK1-/- slices and in JNK inhibitor anthrax [1, 9-cd] pyrazol-6(2H)-1 (SP600125)-pretreated slices. Induction of mGluR-dependent LTD resulted in an increase in phosphorylation of JNK1 substrates, including p-c-Jun and p-ATF2 in wild-type (WT) mice, and these increases failed to occur in the JNK1-/- or SP600125-pretreated mice. These results demonstrated that JNK1 played a crucial role in the short-term synaptic plasticity and mGluR-dependent LTD, whereas hippocampus LTP was not affected by JNK1 deficiency.
Asunto(s)
Hipocampo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Proteína Quinasa 8 Activada por Mitógenos/fisiología , Plasticidad Neuronal/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Factor de Transcripción Activador 2/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Antracenos/farmacología , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Técnicas In Vitro , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 8 Activada por Mitógenos/deficienciaRESUMEN
Activation of neuronal nicotinic acetylcholine receptors (nAChRs) modulates the induction of long-term potentiation (LTP): a possible cellular mechanism of learning. To investigate the effect of nicotine on synaptic plasticity in chronically lead-exposed rats, field excitatory postsynaptic potentials and paired-pulse facilitation (PPF) were recorded in the CA1 area of hippocampal slices from chronically lead-exposed 23-30-day-old rats. The results showed the following. (1) Nicotine (1 microm) facilitated the induction of LTP in CA1 by a weak tetanic stimulation (100 Hz, 20 pulses), which does not by itself produce LTP in lead-exposed rats. This effect was significantly suppressed by mecamylamine, a nicotinic antagonist, suggesting that the facilitation of LTP was through nAChRs. (2) The nicotine-facilitated LTP was blocked by dihydro-beta-erythroidine (DHbetaE), a non-alpha7 nAChR antagonist, whereas long-term depression (LTD) was produced by the combination of nicotine and methyllycaconitine, a alpha7-nAChR antagonist. This type of LTD was blocked by DHbetaE. This suggested that several nAChR subtypes were involved in the nicotine-facilitated synaptic plasticity. (3) Nicotine enhanced PPF in the hippocampal CA1 region, and the nicotine-facilitated LTP in lead-exposed rats was blocked by either d-(-)-2-amino-5-phosphonopentanoic acid, the N-methyl-d-aspartate (NMDA) receptor antagonist, or picrotoxin, an antagonist of gamma-aminobutyric acid(A) receptors. We suggest that nicotine-facilitated synaptic plasticity was due to the activation of NMDARs by disinhibition of pyramidal cells through presynaptic nAChRs. This may represent the cellular basis of nicotine-facilitated cognitive enhancement observed in chronically lead-exposed rats.