RESUMEN
BACKGROUND: Signal transducer and activator of transcription 3 (STAT3) is an oncogene constitutively activated in hepatocellular carcinoma (HCC) cells and HCC cancer stem cells (CSCs). Constitutively activated STAT3 plays a pivotal role in holding cancer stemness of HCC CSCs, which are essential for hepatoma initiation, relapse, metastasis and drug resistance. Therefore, STAT3 has been validated as a novel anti-cancer drug target and the strategies targeting HCC CSCs may bring new hopes to HCC therapy. This study aimed to isolate and identify small-molecule STAT3 signaling inhibitors targeting CSCs from the ethyl acetate (EtOAc) extract of the roots of Polygonum cuspidatum and to evaluate their in vitro anti-cancer activities. METHODS: The chemical components of the EtOAc extract and the subfractions of P. cuspidatum were isolated by using various column chromatographies on silical gel, Sephadex LH-20, and preparative HPLC. Their chemical structures were then determined on the basis of spectroscopic data including NMR, MS and IR analysis and their physicochemical properties. The inhibitory effects of the isolated compounds against STAT3 signaling were screened by a STAT3-dependent luciferase reporter gene assay. The tyrosine phosphorylation of STAT3 was examined by Western Blot analysis. In vitro anti-cancer effects of the STAT3 pathway inhibitor were further evaluated on cell growth of human HCC cells by a MTT assay, on self-renewal capacity of HCC CSCs by the tumorsphere formation assay, and on cell cycle and apoptosis by flow cytometry analysis, respectively. RESULTS: The EtOAc extract of the roots of P. cuspidatum was investigated and a novel juglone analogue 2-ethoxystypandrone (1) along with seven known compounds (2-8) was isolated. Among the eight isolated compounds 1-8, 2-ethoxystypandrone was a novel and potent STAT3 signaling inhibitor (IC50 = 7.75 ± 0.18 µM), and inhibited the IL-6-induced and constitutive activation of phosphorylation of STAT3 in HCC cells. Moreover, 2-ethoxystypandrone inhibited cell survival of HCC cells (IC50 = 3.69 ± 0.51 µM ~ 20.36 ± 2.90 µM), blocked the tumorspheres formation (IC50 = 2.70 ± 0.28 µM), and induced apoptosis of HCC CSCs in a dose-dependent manner. CONCLUSION: A novel juglone analogue 2-ethoxystypandrone was identified from the EtOAc extract of the roots of P. cuspidatum and was demonstrated to be a potent small-molecule STAT3 signaling inhibitor, which strongly blocked STAT3 activation, inhibited proliferation, and induced cell apoptosis of HCC cells and HCC CSCs. 2-Ethoxystypandrone as a STAT3 signaling inhibitor might be a promising lead compound for further development into an anti-CSCs drug.
Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fallopia japonica/química , Naftoquinonas/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , Línea Celular Tumoral , Células Hep G2 , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Extractos Vegetales/química , Transducción de Señal/efectos de los fármacosRESUMEN
BACKGROUND: Neuraminidase (NA) is one of the key surface protein of the influenza virus, and has been established as a primary drug target for anti-influenza therapies. This study aimed to screen bioactive herbal extracts from some medicinal plants traditionally used in Lingnan Chinese Medicines by NA activity high-throughput screening assay. METHODS: One hundred ninety herbal extracts from 95 medicinal plants collected in Guangzhou were screened for their potential inhibitory activities against A (H1N1) influenza neuraminidase, and the most active extracts were further evaluated for their anti-influenza virus activities using virus-induced cytopathic effect (CPE). RESULTS: Among the tested 190 herbal extracts, 14 extracts inhibited significantly NA activity (IC50 < 40 µg/mL), and the extracts 1-5, which were obtained from Amomurn villosum Lour, Melaphis chinensis (Bell) Baker, Sanguisorba officinalis and Flos Caryophylli, showed potent inhibitory activity against NA with IC50 values ranging from 4.1 to 9.6 µg/mL. Moreover, the most bioactive extracts 1-5 were found to protect MDCK cells from A (H1N1) influenza virus infection with very low cytotoxicity to the host cells (EC50 values ranged from 1.8 to 14.1 µg/mL, CC50 values ranged from 97.0 to 779.2 µg/mL, SI values ranged from 14 to 438). In addition, quantitative RT-PCR analysis showed that the extracts 1-5 inhibited viral RNA synthesis in a dose-dependent manner. CONCLUSION: We performed in vitro screening of anti-neuraminidase activities of herbal extracts from medicinal plants used in Lingnan Chinese Medicines, and the results indicate that some bioactive extracts are worth further studies to identify the bioactive components responsible for anti-influenza virus activities, to elucidate their modes of action and finally determine their clinical potentials.
Asunto(s)
Antivirales , Descubrimiento de Drogas/métodos , Medicamentos Herbarios Chinos , Neuraminidasa/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Antivirales/aislamiento & purificación , Antivirales/farmacología , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Subtipo H1N1 del Virus de la Influenza A/enzimologíaRESUMEN
OBJECTIVE: To isolate and identify active neuraminidase constituents of Polygonum cuspidatum against influenza A (H1N1) influenza virus. METHOD: On the basis of the bioassay-guided fractionation,such chromatographic methods as silica gel, sephadex LH-20 and HPLC were adopted to isolate active constituents of extracts from Polygonum cuspidatum, and their molecular structures were identifiied on the basis of their spectral data such as NMR and MS and physico-chemical properties. RESULT: Seven compounds were isolated from the ethyl acetate extract of P. cuspidatum and identified as 2-methoxystypandrone (1), emodin (2), resveratrol (3), polydatin (4), emodin-8-O-beta-D-glucopyranoside (5), (E)-3, 5, 12-trihydroxystilbene-3-O-beta-D-glucopyranoside-2'-(3", 4", 5"-trihydroxybenzoate) (6) and catechin-3-O-gallate (7), respectively. Among them, the NA test showed that compounds 3, 6 and 7 had inhibitory effect against NAs activity, with IC50 values of 129.8, 44.8 and 21.3 micromol x L(-1), respectively. Moreover, the further CPE test showed compounds 6 and 7 had significant inhibitory effect against H1N influenza virus (EC50 = 5.9, 0.9 micromol x L(-1), respectively), with very low cytotoxicity to the host cells, their therapeutic selective index(SI) in MDCK cells ranged from 56 to 269. CONCLUSION: The neuraminidase inhibitors against H1N1 anti-influenza virus isolated from extracts of P. cuspidatum on the basis of the bioassay-guided fractionation are significant in specifying their therapeutic material basis and drug R&D against influenza.