Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Opt Lett ; 49(5): 1349-1352, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427010

RESUMEN

Due to the intrinsic polarized emission property, polarized emissive materials with anisotropic nanostructures are expected to be potential substitutes for polarizers. Herein, by the template-assisted strategy, well-aligned lead-free metal halide Cs3Cu2I5 nanowire (NW) arrays are fabricated by evaporating the precursor ink in the anodic aluminum oxide (AAO) for polarized emission. The Cs3Cu2I5/AAO composite film emits highly polarized light with a degree of polarization (DOP) of 0.50. Furthermore, by changing the molar ratio of CsI/CuI, the stability of Cs3Cu2I5 precursor inks is improved. Finally, an ultraviolet (UV) light-emitting diode (LED) is adopted to pump the composite film to achieve a blue LED device. The reported Cs3Cu2I5/AAO composite film with highly polarized light emissions will have great potential for polarized emission applications such as liquid crystal display backlights, waveguides, and lasers.

2.
Cell Tissue Bank ; 24(1): 221-230, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35896934

RESUMEN

Feeder cells play important roles in In-vitro culture of stem cells. However, the preparation protocol of feeder cells produced by bovine embryonic fibroblast cells (bEFs) is still lack. In this study, the preparation of bEF-feeder by Mitomycin C was optimized with different concentrations and treatment time. The cell viability of bEFs was detected by CCK8 and 5-Ethynyl-2'-deoxyuridine. The growth of bESCs in each bEFs-feeder group was assessed by alkaline phosphatase staining and CCK8. Quantitative real time PCR was used to detect the mRNA expression of pluripotency-related genes of bESCs. Results showed that the proliferation of bEFs was significantly repressed while bEFs were treated with 14 ug/mL or 16 ug/mL Mitomycin C for 3 h, and the cell viability within 2-4 days after treatment was consistent with the 1st day. The numbers of bESCs clones in bEF-feeder treated with 14 µg/mL Mitomycin C for 3 h or 16 µg/mL Mitomycin C for 3 h were significantly higher than that in bEF-feeder treated with 8 µg/mL Mitomycin C for 8 h or bEFs treated with 6 µg/mL Mitomycin C for 9 h. The mRNA expression of pluripotency-related genes in bESCs cultured by bEF-feeder were higher than the MEF-feeder, the clone morphology of bESCs cultured in bEF-feeder was rounder and sharper than the MEF-feeder. In conclusion, the bEF-feeder prepared with 14 µg/mL Mitomycin C for 3 h or 16 µg/mL Mitomycin C for 3 h could effectively maintains the growth of bESCs, and bEF-feeder is more suitable for bESCs culture than the MEF-feeder.


Asunto(s)
Técnicas de Cultivo de Célula , Células Nutrientes , Fibroblastos , Mitomicina , Células Madre Pluripotentes , Bovinos , Supervivencia Celular/efectos de los fármacos , Mitomicina/farmacología , Células Madre Pluripotentes/citología , Animales
3.
Funct Integr Genomics ; 22(1): 77-87, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34839400

RESUMEN

In summer, heat stress is one of the primary reasons for the compromised health and low milk productivity of dairy cows. Hyperthermia affects milk synthesis and secretion in the mammary glands of dairy cows. As molecules for intercellular communication, milk-derived exosomes carry genetic material, proteins, and lipids, playing a crucial role in mammary tissue growth and milk synthesis in dairy cows. The aim of this study was to explore the milk exosomal miRNA profile of heat-stressed and normal Holstein cows. We isolated and identified milk exosomes to screening for differentially expressed miRNAs using small RNA sequencing. Then, TargetScan and miRanda algorithms were used to predict the putative targets of the differentially expressed miRNAs, whereas GO and KEGG pathway enrichment analyses were performed for the differentially expressed miRNA-target genes. Our results showed that 215 miRNAs were significantly differentially expressed in heat-stressed milk exosomes, of which one was upregulated and 214 were significantly downregulated. GO and KEGG enrichment analyses indicated that differentially expressed miRNAs might play a role in apoptosis, autophagy, and the p38 MAPK pathway. qRT-PCR assay verified that the expression of miRNAs was consistent with the sequencing results, warranting further verification of their specific targets of action. In conclusion, changes in the miRNA expression profile of milk exosomes indicated the role of exosomal miRNAs in regulating heat stress resistance and apoptosis in dairy cows. Our results suggested that milk-derived exosomal miRNAs could increase mammary gland resistance to heat stress, thereby enhancing milk synthesis in dairy cows.


Asunto(s)
Exosomas , Respuesta al Choque Térmico , MicroARNs , Leche/química , Animales , Bovinos , Biología Computacional , Exosomas/genética , Femenino , Perfilación de la Expresión Génica , Respuesta al Choque Térmico/genética , MicroARNs/genética
4.
Mol Biol Rep ; 49(10): 9297-9305, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35945402

RESUMEN

BACKGROUND: Exosomes are involved in intercellular communication, affecting many physiological and pathological process. The present study evaluated the effects of serum exosomes on the function of bovine mammary epithelial cells (BMECs) and milk synthesis under heat stress. METHODS AND RESULTS: We cultured the BMECs in fetal bovine serum (FBS) or exosome-free FBS medium and examined, their viability using CCK-8 kit. The results showed that culturing the cells in an exosome-free medium decreased viability and increased the levels of reactive oxygen species. The BMECs cultured in the exosome-free medium had reduced mitochondrial membrane potential, decreased manganese superoxide dismutase activity, and disrupted mitochondrial dynamics. They exhibited apoptosis due to upregulated Drp1, Fis1, Bax and HSP70. Lastly, we observed downregulation of milk fat and lactoprotein-related genes: mTOR, PPARγ, p-mTOR and ADD1 and SREBP1, ELF5, and CSN2, respectively, after culturing the cells in an exosome-free medium. These negative effects of the exosome-free medium on the BMECs could be further reinforced under heat stress. CONCLUSION: Our results demonstrated that exosomes from serum are critical for maintaining the normal function of BMECs.


Asunto(s)
Glándulas Mamarias Animales , PPAR gamma , Animales , Células Cultivadas , Células Epiteliales , Respuesta al Choque Térmico , Especies Reactivas de Oxígeno/farmacología , Albúmina Sérica Bovina/farmacología , Sincalida/farmacología , Superóxido Dismutasa , Serina-Treonina Quinasas TOR , Proteína X Asociada a bcl-2
5.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362094

RESUMEN

Sirtuin 4 (SIRT4), a member of the SIRT family, has been reported to be a key factor involved in antioxidant defense in mitochondria. This study aimed to explore the potential molecular mechanism via which SIRT4 regulates heat stress-induced oxidative stress and lactoprotein synthesis in bovine mammary epithelial cells (BMECs). Our results showed that SIRT4 was significantly decreased in heat stressed mammary tissue. Depletion of SIRT4 in BMECs induced the generation of ROS, which, as exhibited by the decreased activity of antioxidant enzymes, changed mitochondrial morphology through mediating protein and mRNA levels related to mitochondrial fission and fusion. Moreover, we found that depletion of SIRT4 or stress conditions inhibited the expression of milk proteins, as well as lipid and glucose synthesis-related genes, and activated the AMPK/mTOR signaling pathway. Increased SIRT4 expression was found to have the opposite effect. However, blocking the AMPK/mTOR signaling pathway could inhibit the regulatory function of SIRT4 in milk synthesis-related gene expression. In summary, our results suggest that SIRT4 may play critical roles in maintaining mammary gland function by regulating the AMPK/mTOR signaling pathway in dairy cows, indicating that SIRT4 may be a potential molecular target for curing heat stress-induced BMEC injury and low milk production in dairy cows.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Antioxidantes , Femenino , Bovinos , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Antioxidantes/farmacología , Transducción de Señal , Células Epiteliales/metabolismo , Respuesta al Choque Térmico , Serina-Treonina Quinasas TOR/metabolismo , Glándulas Mamarias Animales/metabolismo
6.
J Cell Physiol ; 236(1): 392-404, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32519422

RESUMEN

Sestrin2 (SESN2) is a highly conservative oxidative stress protein that can regulate energy metabolism, cell proliferation, apoptosis, and mitochondria autophagy processes. It plays a role as an antioxidant in various diseases. The aims of the present study were to explore the underlying role of SESN2 after hydrogen peroxide (H2 O2 ) treatment in bovine mammary epithelial cells (MAC-T cells) by the methods of knockout or overexpression of SESN2. The results show that knockout of Sestrin2 exacerbate apoptosis, upregulate the expressions of Bax/Bcl2 in H2 O2 -treated MAC-T cells. Moreover, knockout of SESN2 also promoted reactive oxygen species (ROS) generation and exacerbated oxidative damage in H2 O2 -treated MAC-T cells. On the contrary, overexpression of SESN2 decreased apoptosis by downregulation of Bax/Bcl2 level decreased ROS generation and blocked oxidative damage in H2 O2 -treated MAC-T cells. In addition, results indicate that the Kelch-like ECH-associated protein-1 (Keap1)-nuclear factor (erythroid-derived 2) like2 (Nrf2)/antioxidant response element (ARE) signaling pathway was activated by H2 O2 ; upregulation of SESN2 could relieve oxidative stress by inducing the expression of Keap1, Nrf2, HO-1, and NDPH: quinone oxidoreductase-1 protein. In conclusion, this study demonstrates that expression of SESN2 was significantly increased after H2 O2 treatment and that SESN2 can alleviate oxidative stress and cell apoptosis in H2 O2 -treated MAC-T cells through activation of the Keap1-Nrf2/ARE pathway.


Asunto(s)
Células Epiteliales/metabolismo , Glándulas Mamarias Animales/metabolismo , Proteínas Nucleares/genética , Estrés Oxidativo/genética , Transducción de Señal/genética , Regulación hacia Arriba/genética , Animales , Antioxidantes/metabolismo , Apoptosis/genética , Hidrolasas de Éster Carboxílico/genética , Bovinos , Proliferación Celular/genética , Células Cultivadas , Regulación hacia Abajo/genética , Células Epiteliales/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/genética , Glándulas Mamarias Animales/efectos de los fármacos , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Activación Transcripcional/genética
7.
Toxicol Appl Pharmacol ; 416: 115469, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33640343

RESUMEN

Heat stress-induced oxidative stress in bovine mammary epithelial cells (BMECs) threatens the normal growth and development of bovine mammary tissue, resulting in lower milk production of dairy cows. The aim of the present study is to investigate the protective effects of S-allyl cysteine (SAC), an organosulfur component extracted from aged garlic, on heat stress-induced oxidative stress and apoptosis in BMECs and to explore its underlying mechanisms. Our results showed that heat stress treatment considerably decreased cell viability, whereas SAC treatment dose-dependently restored cell viability of BMECs under heat-stress conditions. In addition, SAC protected BMECs from heat stress-induced oxidative damage by inhibiting the excessive accumulation of reactive oxygen species (ROS) and increasing the activity of antioxidant enzymes. It also inhibited heat stress-induced apoptosis by reducing the ratio of Bax/Bcl-2 and blocking proteolytic the cleavage of caspase-3 in BMECs. Interestingly, we found that the protective effect of SAC on heat stress-induced oxidative stress and apoptosis was dependent on the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. SAC promoted the Nrf2 nuclear translocation in heat stress-induced BMECs. The results were also validated by Nrf2 and Keap1 knockdown experiments further demonstrating that Nrf-2 was indeed involved in the protective effect of SAC on heat stress-induced oxidative damage and apoptosis. In summary, our results showed that SAC could protect BMECs from heat stress-induced injury by mediating the Nrf2/HO-1 signaling pathway, suggesting that SAC could be considered as a therapeutic drug for attenuating heat stress-induced mammary gland diseases.


Asunto(s)
Antioxidantes/farmacología , Cisteína/análogos & derivados , Células Epiteliales/efectos de los fármacos , Respuesta al Choque Térmico/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Glándulas Mamarias Animales/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Bovinos , Células Cultivadas , Cisteína/farmacología , Células Epiteliales/enzimología , Células Epiteliales/patología , Femenino , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Glándulas Mamarias Animales/enzimología , Glándulas Mamarias Animales/patología , Transducción de Señal
8.
Ecotoxicol Environ Saf ; 214: 112078, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33676053

RESUMEN

It is well known that the dairy cow production is very sensitive to environmental factors, including high temperature, high humidity and radiant heat sources. High temperature-induced heat stress is the main environmental factor that causes oxidative stress and apoptosis, which affects the development of mammary glands in dairy cows. Dihydromyricetin (DMY) is a nature flavonoid compound extracted from Ampelopsis grossedentata; it has been shown to have various pharmacological functions, such as anti-inflammation, antitumor and liver protection. The present study aims to evaluate the protective effect of DMY on heat stress-induced dairy cow mammary epithelial cells (DCMECs) apoptosis and explore the potential mechanisms. The results show that heat stress triggers heat shock response and reduces cell viability in DCMECs; pretreatment of DCMECs with DMY (25 µM) for 12 h significantly alleviates the negative effects of heat stress on cells. DMY can provide cytoprotective effects by suppressing heat stress-caused mitochondrial membrane depolarization and mitochondrial dysfunction, Bax and Caspase 3 activity, and modulation of oxidative enzymes, thereby preventing ROS production and apoptosis in DCMECs. Importantly, DMY treatment could attenuate heat stress-induced mitochondrial fragmentation through mediating the expression of mitochondrial fission and fusion-related genes, including Dynamin related protein 1 (Drp1), Mitochondrial fission 1 protein (Fis1), and Mitofusin1, 2 (Mfn1, 2). Above all, our findings demonstrate that DMY could protect DCMECs against heat stress-induced injury through preventing oxidative stress, the imbalance of mitochondrial fission and fusion, which provides useful evidence that DMY can be a promising therapeutic drug for protecting heat stress-induced mammary glands injury and mastitis.


Asunto(s)
Flavonoles/farmacología , Respuesta al Choque Térmico/efectos de los fármacos , Sustancias Protectoras/farmacología , Animales , Apoptosis/efectos de los fármacos , Bovinos , Supervivencia Celular/efectos de los fármacos , Dinaminas , Células Epiteliales/efectos de los fármacos , Femenino , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
9.
Int J Mol Sci ; 21(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947887

RESUMEN

CD44 is widely expressed in most vertebrate cells, whereas the expression of CD44v6 is restricted to only a few tissues and has been considered to be associated with tumor progression and metastasis. Thus, CD44v6 has been recognized as a promising prognostic biomarker and therapeutic target for various cancers for more than a decade. However, despite many experimental studies, the structural dynamics and differences between CD44s and CD44v6, particularly in their stem region, still remain elusive. Here, a computational study was conducted to address these problems. We found that the stem of CD44s adopted predominantly two conformations, one featuring antiparallel ß-sheets and the other featuring parallel ß-sheets, whereas the stem of CD44v6 adopted mainly one conformation with relatively highly suppressed ß-sheet contents. Moreover, Phe215 was found to be essential in the ß-sheets of both CD44s and CD44v6. We finally found intramolecular Phe215-Trp224 hydrogen-bonding interactions and hydrophobic interactions with Phe215 that cooperatively drove conformational differences upon the addition of the v6 region to CD44. Our study elucidated the structural differences between the stem regions of CD44s and CD44v6 and thus can offer useful structural information for drug design to specifically target CD44v6 in promising clinical applications.


Asunto(s)
Receptores de Hialuranos/química , Neoplasias/química , Secuencia de Aminoácidos , Animales , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Conformación Proteica , Conformación Proteica en Lámina beta , Isoformas de Proteínas/química , Ratas
10.
J Cell Physiol ; 234(4): 3961-3972, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30191981

RESUMEN

Heat stress can inhibit follicular development in dairy cows, and thus can affect their reproductive performance. Follicular granulosa cells can synthesize estrogen, that affects the development and differentiation of follicles by apoptosis. Heme oxygenase 1 (HO-1/heat shock protein 32) plays an antiapoptotic and cytoprotective role in various cells during stress-induced apoptosis, but little is known about its definitive function in bovine (ovarian) granulosa cells (bGCs). In our study, the roles and mechanism of HO-1 on the heat stress-induced apoptosis of bGCs were studied. Our results show that the expression of HO-1 was significantly increased under heat stress. Moreover, HO-1 silencing increased apoptosis, whereas its overexpression dampened apoptosis by regulating the expression of Bax/Bcl-2 and the levels of cleaved caspase-3. In addition, HO-1 can also play a cytoprotective role by affecting estrogen levels and decomposing heme to produce biologically active metabolite carbon monoxide (CO). Meanwhile, CO significantly increased the level of HO-1, decreased Bax/Bcl-2 levels, and inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. The apoptosis of ovarian GCs can affect the secretion of estrogen and lead to disorder of the ovarian microenvironment, thus affecting the normal function of the ovary. Our results indicate that HO-1 acts as a cytoprotective enzyme and plays a protective role in heat-induced apoptosis of bGCs. In conclusion, HO-1 and its metabolite CO inhibit the apoptosis of bGCs induced by heat stress through the ERK1/2 pathway. The results of this study provide a valuable clue for improving the fertility of heat stressed cows in summer.


Asunto(s)
Apoptosis , Células de la Granulosa/enzimología , Respuesta al Choque Térmico , Hemo-Oxigenasa 1/metabolismo , Calor/efectos adversos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Monóxido de Carbono/metabolismo , Bovinos , Células Cultivadas , Femenino , Hemo-Oxigenasa 1/genética , Transducción de Señal
11.
J Cell Biochem ; 120(2): 1122-1132, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30256444

RESUMEN

The adipokine Chemerin has been reported to regulate differentiation and metabolism of adipocytes, but the mechanism underlying lipolysis is still largely unknown. The purpose of this study was to explore whether ERK1/2 pathway is involved in regulating Chemerin during bovine intramuscular mature adipocyte lipolysis. Intramuscular mature adipocytes of dairy bull calves were cultured in vitro and were treated with Chemerin or U0126, which is an inhibitor of ERK1/2 pathway. The results showed that TG content in cells was significantly decreased, glycerol and free fatty acid were significantly increased in cell culture media, and the expression of phosphorylated ERK1/2 in cells was increased in Chemerin-treated group, suggested that ERK1/2 pathway was involved in regulation of lipolysis by Chemerin. In addition, the expression of lipolytic-related critical factors ATGL, HSL, LPL, PPARα, UCP3, and CPT1 were upregulated, but the expression of adipogenic key factors, including PPARγ and C/EBPα were downregulated by Chemerin. Interestingly, all the effects of Chemerin on genes expression in intramuscular mature adipocytes or fat tissue were inhibited by U0126, showed that the function of Chemerin to promote adipose decomposition will be significantly weakened if the ERK1/2 pathway is suppressed, and confirmed that ERK1/2 pathway is involved in mediate Chemerin-enhanced lipolysis. In conclusion, the study demonstrated that Chemerin induce intramuscular mature adipocytes lipolysis through activation of the ERK1/2 pathway. Our research at least provide partial mechanisms of Chemerin on lipolysis and deposition of intramuscular fat tissue of dairy bull calves.

12.
Small ; 15(47): e1903750, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31549782

RESUMEN

A novel raspberry-shaped thermochromic energy storage nanocapsule (RTESN) is successfully designed and fabricated with switchable sunlight absorption capacity based on color change for temperature regulation. The RTESN is developed by grafting amino-modified silica shell thermochromic nanoparticles (amino-TLD@SiO2 ) on the surface of epoxy-functionalized energy storage nanocapsules (paraffin@PSG), with a total particle size about 450 nm. RTESN exhibits a deep color under low temperatures, which can absorb sunlight for heating. During the continuous thermal energy supply, paraffin@PSG is capable of storing thermal energy owing to its large latent heat capacity of 118.7 J g-1 , thereby maintaining the slow temperature increase. When the temperature is higher than the phase change temperature of paraffin@PSG, the color of amino-TLD@SiO2 turns to white with more reflection of sunlight so that it reduces the absorption of thermal energy and prevents the further increase of temperature. The thermal regulation behavior is confirmed by setting up a wooden house with the surface covered with RTESN. Compared with the blank wooden house, the RTESN covered wooden house (RTESN-H) displays thermal insulation performances during heating and cooling with a maximum temperature difference of 7 °C.

13.
J Cell Physiol ; 233(9): 6767-6778, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29231244

RESUMEN

SIRT7 is a member of the sirtuin family of proteins that are known to be associated with tumor development. However, the functional roles and molecular mechanisms underlying the function of SIRT7 in breast cancer cell survival and tumor development remain unclear. Recent studies demonstrated that SIRT7 is upregulated in breast cancer cells and tissues. In the present study, we systematically explored the roles of SIRT7 in the growth of breast cancer cells and tumors both in vitro and in vivo. Our results showed that SIRT7 plays a major role in facilitating cell survival by promoting cell proliferation and inhibiting apoptosis. SIRT7 depletion significantly inhibited cell invasion and wound healing by blocking cell cycle progression and inducing cell apoptosis. Meanwhile, SIRT7 depletion can increase the sensitivity of breast cancer cells to doxorubicin (DOX). Xenograft model studies showed that stable silencing of SIRT7 inhibited tumor growth and enhanced tumor sensitivity to DOX. Further research revealed that p38MAPK is involved in SIRT7-mediated regulation of breast cancer cell proliferation and tumor growth. Taken together, our results showed that SIRT7 plays a critical role in breast cancer cell survival, migration, and tumor growth, and increased the efficiency of DOX treatment both in vitro and in vivo. Therefore, SIRT7 is a promising therapeutic target in breast cancer treatment.


Asunto(s)
Neoplasias de la Mama/genética , Movimiento Celular/genética , Proliferación Celular/genética , Sirtuinas/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Doxorrubicina/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
14.
J Cell Physiol ; 233(8): 6088-6097, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29319181

RESUMEN

LIM kinases (LIMK1/2) are LIM domain-containing serine/threonine/tyrosine kinases that mediate multiple cellular processes in mitosis. In the present study, we explored the functional roles and potential signaling pathway of LIMK1/2 during mouse oocyte meiosis. Disruption of LIMK1/2 activity and expression significantly decreased oocyte polar body extrusion. Live-cell imaging revealed that spindle migration was disturbed after both LIMK1 and LIMK2 knock down, and this might be due to aberrant distribution of actin filaments in the oocyte cytoplasm and cortex. Meanwhile, our results demonstrated that the function of LIMK1 and LIMK2 in actin assembly was related to cofilin phosphorylation levels. In addition, disruption of LIMK1/2 activity significantly increased the percentage of oocytes with abnormal spindle morphologies, which was confirmed by the abnormal p-MAPK localization. We further, explored the upstream molecules of LIMK1/2, and we found that after depletion of ROCK, phosphorylation of LIMK1/2 and cofilin were significantly decreased. Moreover, RhoA inhibition caused the decreased expression of ROCK, p-LIMK1/2, and cofilin. In summary, our results indicated that the small GTPase RhoA regulated LIMK1/2-cofilin to modulate cytoskeletal dynamics during mouse oocyte meiosis.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Quinasas Lim/metabolismo , Meiosis/fisiología , Oocitos/metabolismo , Quinasas Asociadas a rho/metabolismo , Actinas/metabolismo , Animales , Citoplasma/metabolismo , Ratones , Ratones Endogámicos ICR , Proteínas de Microfilamentos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mitosis/fisiología , Fosforilación/fisiología , Cuerpos Polares/metabolismo , Transducción de Señal/fisiología , Huso Acromático/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
15.
Mol Cell Biochem ; 418(1-2): 39-48, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27260300

RESUMEN

The adipokine Chemerin is reported to regulate adipogenesis and glucose homeostasis in vivo and in 3T3-L1 cells. Our team is focused on the role of Chemerin in metabolism and intramuscular adipocyte differentiation because intramuscular fat is the basic material for the formation of marbling in livestock and poultry meat. In this study, bovine intramuscular mature adipocytes were cultured in medium with Chemerin, and the process of lipolysis of mature adipocytes and the adipogenesis of de-differentiated preadipocytes were investigated. The results showed that Chemerin induced significant lipolytic metabolism in intramuscular mature adipocytes, indicated by increased levels of glycerol, FFA, and up-regulated expression of the lipolysis critical factors HSL, LPL, and leptin. Meanwhile, the expressions of adipogenic key factors PPARγ, C/EBPα, and A-FABP were decreased by Chemerin during lipolysis or dedifferentiation in mature adipocytes. The de-differentiated preadipocytes could re-differentiate into mature adipocytes. Intriguingly, the formation of cells' lipid droplets was promoted by Chemerin during preadipocyte differentiation. In addition, mRNA and protein expressions of PPARγ, C/EBPα, and A-FABP were up-regulated by Chemerin during preadipocytes differentiation. These results suggest that Chemerin promotes lipolysis in mature adipocytes and induces adipogenesis during preadipocyte re-differentiation, further indicating a dual role for Chemerin in the deposition of intramuscular fat in ruminant animals.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/fisiología , Adipoquinas/metabolismo , Quimiocinas/metabolismo , Lipólisis/fisiología , Músculo Esquelético/metabolismo , Células 3T3-L1 , Adipocitos/citología , Animales , Bovinos , Diferenciación Celular/fisiología , Ratones , Músculo Esquelético/citología
16.
Macromol Rapid Commun ; 37(6): 463-85, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26833559

RESUMEN

Artificial special wetting surfaces have drawn much interest due to their important applications in many fields. Nevertheless, tremendous challenges still remain for the fabrication of wetting surfaces with durable and self-healing properties. Here, recent progress of durable, self-healing wetting surfaces is highlighted by discussing the fabrications of several typical wetting surfaces including superhydrophobic surfaces, superamphiphobic surfaces, underwater superoleophobic surfaces, and high hydrophilic antifouling surfaces based on expertise and related research experience. To conclude, some perspectives on the future research and development of these special wetting surfaces are presented.


Asunto(s)
Hidróxido de Aluminio/química , Nanoestructuras/química , Silanos/química , Dióxido de Silicio/química , Interacciones Hidrofóbicas e Hidrofílicas , Electricidad Estática , Agua/química , Humectabilidad
17.
Histochem Cell Biol ; 142(2): 227-33, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24562870

RESUMEN

ROCK is a Rho-GTPase effector that is important for actin assembly and is involved in various cellular functions, including cell contraction, migration, motility, and tumor cell invasion. In this study, we investigated ROCK expression and function during early mouse embryo development. Inhibiting ROCK by Y-27632 treatment at the zygote stage resulted in first cleavage failure, and most embryos failed to develop to the 8-cell stage. When adding Y-27632 at the 8-cell stage, embryos failed to undergo compaction and could not develop into blastocysts. In addition, fluorescence staining intensity analysis indicated that actin expression at blastomere membranes was significantly reduced. After ROCK inhibition, two or more nuclei were observed in a cell, which indicated possible cytokinesis failure. Moreover, after ROCK inhibition with Y-27632, the phosphorylation levels of LIMK1/2, a downstream molecule of ROCK, were decreased at blastomere membranes. Thus, our results showed conserved roles for ROCK in this mammalian embryo model and indicated that a ROCK-LIMK1/2-actin pathway might regulate cleavage and blastocyst formation during early mouse embryo development.


Asunto(s)
Actinas/biosíntesis , Amidas/farmacología , Desarrollo Embrionario/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Piridinas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Animales , Blastocisto/citología , Blastómeros/metabolismo , Citocinesis/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Quinasas Lim/metabolismo , Ratones , Ratones Endogámicos ICR , Fosforilación/efectos de los fármacos
18.
Mol Biol Rep ; 41(8): 5525-31, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24874305

RESUMEN

High temperature will cause animal tissues or cells damage. Rosmarinic acid (RA) is a good antioxidant and health care product, but the roles of RA in muscle cells damage and the mechanisms which caused by high temperature is still unknown. In this study, the roles of RA on hyperthermia-induced apoptosis and damage of C2C12 muscle cells were investigated. C2C12 cells were cultured in medium with different concentration (0, 25, 50, 100 µM) RA and treated in 42 °C high temperature to induce cellular apoptosis and damage. Then, these cells were analyzed effect of different dose of RA on cells apoptosis and damage. The results indicated that RA has protective effect on heat-stress induced cellular damage, and the cells have the higher cell viability at the dose of 50 µM RA by MTT assay. Hochest33342/PI double staining showed that the cellular apoptosis of C2C12 cells were decreased in the presence of selected 50 µM RA. Malondialdehyde formation and reactive oxygen species levels were also decreased significantly, but cellular superoxide dismutase activity was increased significantly in the presence of RA even in the condition of 42 °C. Meanwhile, Caspase-3 mRNA expression, Caspase-3 activity, and Bax/Bcl-2 ratio were reduced significantly, but the mRNA expression of Hsp72 was increased significantly in those hyperthermia-induced C2C12 cells in the presence of 50 µM RA. Taken together, the results at least discovered that RA has protective effects on hyperthermia-induced cellular apoptosis and damage of muscle cells by change the expression of stress-genes and increasing intracellular antioxidant capability.


Asunto(s)
Cinamatos/farmacología , Depsidos/farmacología , Respuesta al Choque Térmico , Calor , Células Musculares/citología , Células Musculares/efectos de los fármacos , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Proteínas del Choque Térmico HSP72/genética , Proteínas del Choque Térmico HSP72/metabolismo , Malondialdehído/metabolismo , Ratones , Células Musculares/metabolismo , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Ácido Rosmarínico
19.
Int J Biol Macromol ; 263(Pt 1): 130285, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373571

RESUMEN

Phase change microcapsules are known for their latent heat storage capability. However, the efficient absorption and utilization of solar energy by these microcapsules remains a significant challenge. In this study, we successfully prepared composite phase change microcapsules containing ZnO-Ag nanospheres, chitosan, and paraffin. These microcapsules demonstrated remarkable photothermal conversion efficiency. ZnO was found to effectively absorb ultraviolet light, while the plasmonic resonance of Ag was utilized to absorb and make use of light energy in the visible region. Moreover, due to the synergistic absorption and reflection of electromagnetic waves by ZnO-Ag nanoparticles and graphene, the well-dispersed chitosan/ZnO-Ag composite microcapsules and graphene in the fabric coating demonstrated exceptional electromagnetic shielding performance. In addition, the coated fabric based on composite microcapsules exhibited excellent antibacterial properties, effectively inhibiting the growth of bacteria such as S. aureus and E. coli. This antibacterial performance adds to their potential applications in various fields. These multifunctional phase change microcapsules offer vast potential for the effective utilization of solar energy, serving as efficient photothermal conversion and energy storage materials.


Asunto(s)
Quitosano , Grafito , Energía Solar , Óxido de Zinc , Óxido de Zinc/farmacología , Escherichia coli , Staphylococcus aureus , Cápsulas , Antibacterianos/farmacología
20.
Carbohydr Polym ; 335: 122042, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616072

RESUMEN

Manufacturing flexible sensors with prominent mechanical properties, multifunctional sensing abilities, and remarkable self-healing capabilities remains a difficult task. In this study, a novel vanillin-modified polyacrylate (VPA), which is capable of forming green dynamic covalent crosslinking with chitosan (CS), was synthesized. The synthesized VPA was combined with mesoporous silica-modified MXene (AMS-MXene) and covalently cross-linked simultaneously with CS, resulting in the formation of a flexible composite conductive film designed for dual-mode sensors. Due to the multidimensional structure formed by the mesoporous silica and MXene layers, the resulting composite film is not only suitable for strain sensing but also excels in gas response sensing. Most importantly, the composite films demonstrate a remarkable self-healing capability through reversible dynamic covalent bonds, specifically Schiff base bonds, coupled with multiple hydrogen bonding interactions with AMS-MXene. This robust self-repair functionality remains effective even at a low temperature of 30 °C. Additionally, the synergistic antibacterial effect exerted by vanillin and CS in the film can endow the composite sensor with excellent antimicrobial properties. This multifunctional composite film holds tremendous potential for applications in green flexible wearable sensors. Furthermore, it can show diverse applications in a wide variety of fields, driving advances in wearable technology and human health monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA