Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Drug Metab Dispos ; 48(2): 93-105, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31771949

RESUMEN

Organic cation transporter 1 (OCT1) plays a role in hepatic uptake of drugs, affecting in vivo exposure, distinguished primarily through pharmacogenetics of the SLC22A1 gene. The role of OCT1 in vivo has not been confirmed, however, via drug-drug interactions that similarly affect exposure. In the current research, we used Oct1/2 knockout mice to assess the role of Oct1 in hepatic clearance and liver partitioning of clinical substrates and assess the model for predicting an effect of OCT1 function on pharmacokinetics in humans. Four OCT1 substrates (sumatriptan, fenoterol, ondansetron, and tropisetron) were administered to wild-type and knockout mice, and plasma, tissue, and urine were collected. Tissue transporter expression was evaluated using liquid chromatography-mass spectrometry. In vitro, uptake of all compounds in human and mouse hepatocytes and human OCT1- and OCT2-expressing cells was evaluated. The largest effect of knockout was on hepatic clearance and liver partitioning of sumatriptan (2- to 5-fold change), followed by fenoterol, whereas minimal changes in the pharmacokinetics of ondansetron and tropisetron were observed. This aligned with uptake in mouse hepatocytes, in which inhibition of uptake of sumatriptan and fenoterol into mouse hepatocytes by an OCT1 inhibitor was much greater compared with ondansetron and tropisetron. Conversely, inhibition of all four substrates was evident in human hepatocytes, in line with reported clinical pharmacogenetic data. These data confirm the role of Oct1 in the hepatic uptake of the four OCT1 substrates and elucidate species differences in OCT1-mediated hepatocyte uptake that should be considered when utilizing the model to predict effects in humans. SIGNIFICANCE STATEMENT: Studies in carriers of SLC22A1 null variants indicate a role of organic cation transporter 1 (OCT1) in the hepatic uptake of therapeutic agents, although OCT1-mediated drug-drug interactions have not been reported. This work used Oct1/2 knockout mice to confirm the role of Oct1 in the hepatic clearance and liver partitioning in mice for OCT1 substrates with reported pharmacogenetic effects. Species differences observed in mouse and human hepatocyte uptake clarify limitations of the knockout model for predicting exposure changes in humans for some OCT1 substrates.


Asunto(s)
Hepatocitos/metabolismo , Hígado/metabolismo , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Transportador 2 de Cátion Orgánico/metabolismo , Animales , Transporte Biológico/fisiología , Línea Celular , Interacciones Farmacológicas/fisiología , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Ondansetrón/metabolismo , Especificidad de la Especie , Tropisetrón/metabolismo
2.
Mol Cell Proteomics ; 15(3): 892-905, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26750096

RESUMEN

The significance of non-histone lysine methylation in cell biology and human disease is an emerging area of research exploration. The development of small molecule inhibitors that selectively and potently target enzymes that catalyze the addition of methyl-groups to lysine residues, such as the protein lysine mono-methyltransferase SMYD2, is an active area of drug discovery. Critical to the accurate assessment of biological function is the ability to identify target enzyme substrates and to define enzyme substrate specificity within the context of the cell. Here, using stable isotopic labeling with amino acids in cell culture (SILAC) coupled with immunoaffinity enrichment of mono-methyl-lysine (Kme1) peptides and mass spectrometry, we report a comprehensive, large-scale proteomic study of lysine mono-methylation, comprising a total of 1032 Kme1 sites in esophageal squamous cell carcinoma (ESCC) cells and 1861 Kme1 sites in ESCC cells overexpressing SMYD2. Among these Kme1 sites is a subset of 35 found to be potently down-regulated by both shRNA-mediated knockdown of SMYD2 and LLY-507, a selective small molecule inhibitor of SMYD2. In addition, we report specific protein sequence motifs enriched in Kme1 sites that are directly regulated by endogenous SMYD2 activity, revealing that SMYD2 substrate specificity is more diverse than expected. We further show direct activity of SMYD2 toward BTF3-K2, PDAP1-K126 as well as numerous sites within the repetitive units of two unique and exceptionally large proteins, AHNAK and AHNAK2. Collectively, our findings provide quantitative insights into the cellular activity and substrate recognition of SMYD2 as well as the global landscape and regulation of protein mono-methylation.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Técnicas de Cultivo de Célula/métodos , Neoplasias Esofágicas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Espectrometría de Masas/métodos , Proteoma/aislamiento & purificación , Proteómica/métodos , Secuencias de Aminoácidos , Benzamidas/farmacología , Línea Celular Tumoral , Carcinoma de Células Escamosas de Esófago , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Marcaje Isotópico , Lisina/metabolismo , Metilación , Proteoma/química , Pirrolidinas/farmacología , Especificidad por Sustrato
3.
J Biol Chem ; 290(22): 13641-53, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25825497

RESUMEN

SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex with LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys(370) at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. These findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes.


Asunto(s)
Antineoplásicos/química , Benzamidas/química , Inhibidores Enzimáticos/química , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Neoplasias/enzimología , Pirrolidinas/química , Línea Celular Tumoral , Proliferación Celular , Cromatina/química , Biología Computacional , Cristalización , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Epigénesis Genética , Histonas/química , Humanos , Espectrometría de Masas , Neoplasias/tratamiento farmacológico , Péptidos/química , Desnaturalización Proteica , Proteómica , Proteína p53 Supresora de Tumor/metabolismo
4.
Front Pharmacol ; 12: 631793, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33658943

RESUMEN

The role of organic cation transporter 1 (OCT1) in humans is gaining attention as data emerges regarding its role in physiology, drug exposure, and drug response. OCT1 variants with decreased in vitro function correlate well with altered exposure of multiple OCT1 substrates in variant carriers. In the current research, we investigate mechanisms behind activity of OCT1 variants in vitro by generating cell lines expressing known OCT1 variants and quantifying membrane OCT1 protein expression with corresponding OCT1 activity and kinetics. Oct knockout mice have provided additional insight into the role of Oct1 in the liver and have reproduced effects of altered OCT1 activity observed in the clinic. To assess the complex effect of Oct1 depletion on pharmacokinetics of prodrug proguanil and its active moiety cycloguanil, both of which are OCT1 substrates, Oct1/2-/- mice were used. Decreased membrane expression of OCT1 was demonstrated for all variant cell lines, although activity was substrate-dependent, as reported previously. Lack of change in activity for OCT1*2 resulted in increased intrinsic activity per pmol of OCT1 protein, particularly for sumatriptan but also for proguanil and cycloguanil. Similar to that reported in humans with decreased OCT1 function, systemic exposure of proguanil was minimally affected in Oct1/2-/- mice. However, proguanil liver partitioning and exposure decreased. Cycloguanil exposure decreased following proguanil administration in Oct1/2-/- mice, as did the systemic metabolite:parent ratio. When administered directly, systemic exposure of cycloguanil decreased slightly; however liver partitioning and exposure were decreased in Oct1/2-/- mice. Unexpectedly, following proguanil administration, the metabolite ratio in the liver changed only minimally, and liver partitioning of cycloguanil was affected in Oct1/2-/- mice to a lesser extent following proguanil administration than direct administration of cycloguanil. In conclusion, these in vitro and in vivo data offer additional complexity in understanding mechanisms of OCT1 variant activity as well as the effects of these variants in vivo. From cell lines, it is apparent that intrinsic activity is not directly related to OCT1 membrane expression. Additionally, in situations with a more complicated role of OCT1 in drug pharmacokinetics there is difficulty translating in vivo impact simply from intrinsic activity from cellular data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA