Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Biol ; 17(8): e3000388, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398189

RESUMEN

Methods for measuring the properties of individual cells within their native 3D environment will enable a deeper understanding of embryonic development, tissue regeneration, and tumorigenesis. However, current methods for segmenting nuclei in 3D tissues are not designed for situations in which nuclei are densely packed, nonspherical, or heterogeneous in shape, size, or texture, all of which are true of many embryonic and adult tissue types as well as in many cases for cells differentiating in culture. Here, we overcome this bottleneck by devising a novel method based on labelling the nuclear envelope (NE) and automatically distinguishing individual nuclei using a tree-structured ridge-tracing method followed by shape ranking according to a trained classifier. The method is fast and makes it possible to process images that are larger than the computer's memory. We consistently obtain accurate segmentation rates of >90%, even for challenging images such as mid-gestation embryos or 3D cultures. We provide a 3D editor and inspector for the manual curation of the segmentation results as well as a program to assess the accuracy of the segmentation. We have also generated a live reporter of the NE that can be used to track live cells in 3 dimensions over time. We use this to monitor the history of cell interactions and occurrences of neighbour exchange within cultures of pluripotent cells during differentiation. We provide these tools in an open-access user-friendly format.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Algoritmos , Animales , Núcleo Celular/fisiología , Colorantes Fluorescentes , Humanos , Indoles , Lamina Tipo B , Membrana Nuclear/metabolismo , Membrana Nuclear/fisiología
2.
EMBO J ; 34(4): 517-30, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25586376

RESUMEN

In adaptation to oncogenic signals, pancreatic ductal adenocarcinoma (PDAC) cells undergo epithelial-mesenchymal transition (EMT), a process combining tumor cell dedifferentiation with acquisition of stemness features. However, the mechanisms linking oncogene-induced signaling pathways with EMT and stemness remain largely elusive. Here, we uncover the inflammation-induced transcription factor NFATc1 as a central regulator of pancreatic cancer cell plasticity. In particular, we show that NFATc1 drives EMT reprogramming and maintains pancreatic cancer cells in a stem cell-like state through Sox2-dependent transcription of EMT and stemness factors. Intriguingly, NFATc1-Sox2 complex-mediated PDAC dedifferentiation and progression is opposed by antithetical p53-miR200c signaling, and inactivation of the tumor suppressor pathway is essential for tumor dedifferentiation and dissemination both in genetically engineered mouse models (GEMM) and human PDAC. Based on these findings, we propose the existence of a hierarchical signaling network regulating PDAC cell plasticity and suggest that the molecular decision between epithelial cell preservation and conversion into a dedifferentiated cancer stem cell-like phenotype depends on opposing levels of p53 and NFATc1 signaling activities.


Asunto(s)
MicroARNs/metabolismo , Factores de Transcripción NFATC/metabolismo , Neoplasias Pancreáticas/metabolismo , Factores de Transcripción SOXB1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Humanos , Ratones , MicroARNs/genética , Factores de Transcripción NFATC/genética , Factores de Transcripción SOXB1/genética , Proteína p53 Supresora de Tumor/genética
3.
Gastroenterology ; 152(6): 1507-1520.e15, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28188746

RESUMEN

BACKGROUND & AIMS: The ability of exocrine pancreatic cells to change the cellular phenotype is required for tissue regeneration upon injury, but also contributes to their malignant transformation and tumor progression. We investigated context-dependent signaling and transcription mechanisms that determine pancreatic cell fate decisions toward regeneration and malignancy. In particular, we studied the function and regulation of the inflammatory transcription factor nuclear factor of activated T cells 1 (NFATC1) in pancreatic cell plasticity and tissue adaptation. METHODS: We analyzed cell plasticity during pancreatic regeneration and transformation in mice with pancreas-specific expression of a constitutively active form of NFATC1, or depletion of enhancer of zeste 2 homologue 2 (EZH2), in the context of wild-type or constitutively activate Kras, respectively. Acute and chronic pancreatitis were induced by intraperitoneal injection of caerulein. EZH2-dependent regulation of NFATC1 expression was studied in mouse in human pancreatic tissue and cells by immunohistochemistry, immunoblotting, and quantitative reverse transcription polymerase chain reaction. We used genetic and pharmacologic approaches of EZH2 and NFATC1 inhibition to study the consequences of pathway disruption on pancreatic morphology and function. Epigenetic modifications on the NFATC1 gene were investigated by chromatin immunoprecipitation assays. RESULTS: NFATC1 was rapidly and transiently induced in early adaptation to acinar cell injury in human samples and in mice, where it promoted acinar cell transdifferentiation and blocked proliferation of metaplastic pancreatic cells. However, in late stages of regeneration, Nfatc1 was epigenetically silenced by EZH2-dependent histone methylation, to enable acinar cell redifferentiation and prevent organ atrophy and exocrine insufficiency. In contrast, oncogenic activation of KRAS signaling in pancreatic ductal adenocarcinoma cells reversed the EZH2-dependent effects on the NFATC1 gene and was required for EZH2-mediated transcriptional activation of NFATC1. CONCLUSIONS: In studies of human and mouse pancreatic cells and tissue, we identified context-specific epigenetic regulation of NFATc1 activity as an important mechanism of pancreatic cell plasticity. Inhibitors of EZH2 might therefore interfere with oncogenic activity of NFATC1 and be used in treatment of pancreatic ductal adenocarcinoma.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Plasticidad de la Célula/genética , Transformación Celular Neoplásica/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Regulación de la Expresión Génica , Factores de Transcripción NFATC/genética , Neoplasias Pancreáticas/genética , Regeneración/genética , Células Acinares/fisiología , Animales , Carcinoma Ductal Pancreático/química , Proliferación Celular/genética , Transdiferenciación Celular/genética , Ceruletida , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Proteína Potenciadora del Homólogo Zeste 2/análisis , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Silenciador del Gen , Histonas/metabolismo , Humanos , Metilación , Ratones , Factores de Transcripción NFATC/análisis , Factores de Transcripción NFATC/metabolismo , Páncreas/fisiología , Neoplasias Pancreáticas/química , Pancreatitis Crónica/inducido químicamente , Pancreatitis Crónica/fisiopatología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal/genética , Transcripción Genética
4.
Gastroenterology ; 148(5): 1024-1034.e9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25623042

RESUMEN

BACKGROUND & AIMS: Oncogenic mutations in KRAS contribute to the development of pancreatic ductal adenocarcinoma, but are not sufficient to initiate carcinogenesis. Secondary events, such as inflammation-induced signaling via the epidermal growth factor receptor (EGFR) and expression of the SOX9 gene, are required for tumor formation. Herein we sought to identify the mechanisms that link EGFR signaling with activation of SOX9 during acinar-ductal metaplasia, a transdifferentiation process that precedes pancreatic carcinogenesis. METHODS: We analyzed pancreatic tissues from Kras(G12D);pdx1-Cre and Kras(G12D);NFATc1(Δ/Δ);pdx1-Cre mice after intraperitoneal administration of caerulein, vs cyclosporin A or dimethyl sulfoxide (controls). Induction of EGFR signaling and its effects on the expression of Nuclear factor of activated T cells c1 (NFATc1) or SOX9 were investigated by quantitative reverse-transcription polymerase chain reaction, immunoblot, and immunohistochemical analyses of mouse and human tissues and acinar cell explants. Interactions between NFATc1 and partner proteins and effects on DNA binding or chromatin modifications were studied using co-immunoprecipitation and chromatin immunoprecipitation assays in acinar cell explants and mouse tissue. RESULTS: EGFR activation induced expression of NFATc1 in metaplastic areas from patients with chronic pancreatitis and in pancreatic tissue from Kras(G12D) mice. EGFR signaling also promoted formation of a complex between NFATc1 and C-JUN in dedifferentiating mouse acinar cells, leading to activation of Sox9 transcription and induction of acinar-ductal metaplasia. Pharmacologic inhibition of NFATc1 or disruption of the Nfatc1 gene inhibited EGFR-mediated induction of Sox9 transcription and blocked acinar-ductal transdifferentiation and pancreatic cancer initiation in mice. CONCLUSIONS: EGFR signaling induces expression of NFATc1 and Sox9, leading to acinar cell transdifferentiation and initiation of pancreatic cancer. Strategies designed to disrupt this pathway might be developed to prevent pancreatic cancer initiation in high-risk patients with chronic pancreatitis.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Transdiferenciación Celular , Receptores ErbB/metabolismo , Factores de Transcripción NFATC/metabolismo , Páncreas Exocrino/metabolismo , Conductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatitis/metabolismo , Lesiones Precancerosas/metabolismo , Factor de Transcripción SOX9/metabolismo , Transducción de Señal , Animales , Carcinoma Ductal Pancreático/inducido químicamente , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Ceruletida , Ciclosporina , Modelos Animales de Enfermedad , Receptores ErbB/genética , Regulación de la Expresión Génica , Humanos , Masculino , Metaplasia , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Factores de Transcripción NFATC/deficiencia , Factores de Transcripción NFATC/genética , Páncreas Exocrino/patología , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/inducido químicamente , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Pancreatitis/inducido químicamente , Pancreatitis/genética , Pancreatitis/patología , Lesiones Precancerosas/inducido químicamente , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Factor de Transcripción SOX9/genética , Técnicas de Cultivo de Tejidos , Activación Transcripcional
5.
Tumour Biol ; 36(6): 4833-42, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25638032

RESUMEN

Ribonucleotide reductase large subunit M1 (RRM1) forms a holoenzyme with small subunits to provide deoxyribonucleotides for DNA synthesis and cell proliferation. Here, we reported a non-RR role of the catalytic subunit protein RRM1 and related pathway in inhibiting colorectal cancer (CRC) metastasis. Ectopic overexpression of the wild-type RRM1, and importantly, its Y738F mutant that lacks RR enzymatic activity, prevented the migration and invasion of CRC cells by promoting phosphatase and tensin homolog on chromosome 10 (PTEN) transactivation. Furthermore, overexpression of the wild-type and RR-inactive mutant RRM1 similarly reduced the phosphorylation of Akt and increased the E-cadherin expression in CRC cells, which were blocked by PTEN knockdown attenuation. Examination of clinical CRC specimens demonstrated that both RRM1 protein expression and RR activity were elevated in most cancer tissues compared to the paired normal tissues. However, while RR activity did not change significantly in different cancer stages, the RRM1 protein level was significantly increased at stages T1-3 but decreased at stage T4, in parallel with the PTEN expression level and negatively correlated with invasion and liver metastasis. Thus, we propose that RRM1 protein can inhibit CRC invasion and metastasis at the advanced stage by regulating PTEN transactivation and its downstream pathways in addition to forming an RR holoenzyme for supporting cancer proliferation. Understanding of the seemingly contrary dual roles of RRM1 protein may further help to explain the complex mechanisms by which this key enzyme and its components are involved in cancer development.


Asunto(s)
Neoplasias Colorrectales/genética , Invasividad Neoplásica/genética , Fosfohidrolasa PTEN/genética , Proteínas Supresoras de Tumor/biosíntesis , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Metástasis de la Neoplasia , Estadificación de Neoplasias , Fosfohidrolasa PTEN/biosíntesis , Ribonucleósido Difosfato Reductasa , Transducción de Señal/genética , Proteínas Supresoras de Tumor/genética
6.
Gastroenterology ; 142(2): 388-98.e1-7, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22079596

RESUMEN

BACKGROUND & AIMS: Transcriptional silencing of the p15(INK4b) tumor suppressor pathway overcomes cellular protection against unrestrained proliferation in cancer. Here we show a novel pathway involving the oncogenic transcription factor nuclear factor of activated T cells (NFAT) c2 targeting a p15(INK4b)-mediated failsafe mechanism to promote pancreatic cancer tumor growth. METHODS: Immunohistochemistry, real-time polymerase chain reaction, immunoblotting, and immunofluorescence microscopy were used for expression studies. Cancer growth was assessed in vitro by [(3)H]thymidine incorporation, colony formation assays, and in vivo using xenograft tumor models. Protein-protein interactions, promoter regulation, and local histone modifications were analyzed by immunoprecipitation, DNA pull-down, reporter, and chromatin immunoprecipitation assays. RESULTS: Our study uncovered induction of NFATc2 in late-stage pancreatic intraepithelial neoplasia lesions with increased expression in tumor cell nuclei of advanced cancers. In the nucleus, NFATc2 targets the p15(INK4b) promoter for inducible heterochromatin formation and silencing. NFATc2 binding to its cognate promoter site induces stepwise recruitment of the histone methyltransferase Suv39H1, causes local H3K9 trimethylation, and allows docking of heterochromatin protein HP1γ to the repressor complex. Conversely, inactivation of NFATc2 disrupts this repressor complex assembly and local heterochromatin formation, resulting in restoration of p15(INK4b) expression and inhibition of pancreatic cancer growth in vitro and in vivo. CONCLUSIONS: Here we describe a novel mechanism for NFATc2-mediated gene regulation and identify a functional link among its repressor activity, the silencing of the suppressor pathway p15(INK4b), and its pancreatic cancer growth regulatory functions. Thus, we provide evidence that inactivation of oncogenic NFATc2 might be an attractive strategy in treatment of pancreatic cancer.


Asunto(s)
Adenocarcinoma/metabolismo , Biomarcadores de Tumor/metabolismo , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Heterocromatina/metabolismo , Factores de Transcripción NFATC/metabolismo , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Femenino , Silenciador del Gen , Humanos , Ratones , Ratones Desnudos , Factores de Transcripción NFATC/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Distribución Aleatoria , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
7.
Curr Opin Struct Biol ; 83: 102704, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37741142

RESUMEN

In eukaryotic cells, genome duplication is temporally organised according to a program referred to as the replication-timing (RT) program. The RT of individual genomic domains strikingly parallels the three-dimensional architecture of their chromatin contacts and subnuclear distribution. However, it is unclear whether this correspondence is coincidental or whether it indicates a causal and regulatory relationship. In either case, the nature of the molecular mechanisms ensuring this spatio-temporal coordination is still unknown. Here, we review recent evidence that begins to uncover the existence of a shared molecular machinery at the core of the spatio-temporal co-regulation of DNA replication and genome architecture. Finally, we discuss the outstanding, key question of the biological role of their coordination.


Asunto(s)
Cromatina , Momento de Replicación del ADN , Replicación del ADN , Células Eucariotas , Genoma
8.
Gut ; 59(5): 630-7, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19880966

RESUMEN

BACKGROUND AND AIMS: There are no chemopreventive strategies for pancreatic cancer or its precursor lesions, pancreatic intraepithelial neoplasia (PanINs). Recent evidence suggests that aspirin and inhibitors of angiotensin-I converting enzyme (ACE inhibitors) have potential chemopreventive properties. In this study, we used a genetically engineered mouse model of pancreatic cancer to evaluate the chemopreventive potential of these drugs. METHODS: Drug treatment was initiated at the age of 5 weeks. LsL-Kras(G12D); Pdx1-Cre or LsL-Kras(G12D); LsL-Trp53(R172H); Pdx1-Cre transgenic mice were randomly assigned to receive either mock treatment, aspirin, enalapril, or a combination of both. After 3 and 5 months, animals were killed. The effect of aspirin and enalapril was evaluated by histopathological analyses, immunostaining, and real-time PCR. RESULTS: After 3 and 5 months of treatment, enalapril and aspirin were able to significantly delay progression of mPanINs in LsL-Kras(G12D); Pdx1-Cre mice. Furthermore, development of invasive pancreatic cancer in LsL-Kras(G12D); LsL-Trp53(R172H); Pdx1-Cre transgenic mice was partially inhibited by enalapril and aspirin. Invasive pancreatic cancer was identified in 15 of 25 (60%) LsL-Kras(G12D); LsL-Trp53(R172H); Pdx1-Cre untreated control mice, but in only three of 17 (17.6%, p=0.01) mice treated with aspirin, in four of 17 (23.5%, p=0.03) in mice treated with enalapril alone, and in five of 16 (31.2%, p=0.11) mice treated with a combination of both drugs. Using real-time PCR we found a significant downregulation of the target genes VEGF and RelA demonstrating our ability to achieve effective pharmacological levels of aspirin and enalapril during pancreatic cancer formation in vivo. CONCLUSION: Using a transgenic mouse model that imitates human pancreatic cancer, this study provides first evidence that aspirin and enalapril are effective chemopreventive agents by delaying the progression of PanINs and partially inhibiting the formation of murine pancreatic cancer. This study together supports the hypothesis that aspirin and ACE inhibitors might be a valid chemopreventive strategy.


Asunto(s)
Anticarcinógenos/uso terapéutico , Aspirina/uso terapéutico , Carcinoma in Situ/prevención & control , Carcinoma Ductal Pancreático/prevención & control , Enalapril/uso terapéutico , Neoplasias Pancreáticas/prevención & control , Amilasas/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Transgénicos , FN-kappa B/genética , FN-kappa B/metabolismo , Invasividad Neoplásica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Receptor de Angiotensina Tipo 1/metabolismo
9.
Nat Commun ; 12(1): 2910, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006872

RESUMEN

Three-dimensional genome organisation and replication timing are known to be correlated, however, it remains unknown whether nuclear architecture overall plays an instructive role in the replication-timing programme and, if so, how. Here we demonstrate that RIF1 is a molecular hub that co-regulates both processes. Both nuclear organisation and replication timing depend upon the interaction between RIF1 and PP1. However, whereas nuclear architecture requires the full complement of RIF1 and its interaction with PP1, replication timing is not sensitive to RIF1 dosage. The role of RIF1 in replication timing also extends beyond its interaction with PP1. Availing of this separation-of-function approach, we have therefore identified in RIF1 dual function the molecular bases of the co-dependency of the replication-timing programme and nuclear architecture.


Asunto(s)
Núcleo Celular/genética , Momento de Replicación del ADN/genética , Células Madre Embrionarias de Ratones/metabolismo , Proteína Fosfatasa 1/genética , Proteínas de Unión a Telómeros/genética , Animales , Ciclo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Expresión Génica , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Células Madre Embrionarias de Ratones/citología , Unión Proteica , Proteína Fosfatasa 1/metabolismo , Proteínas de Unión a Telómeros/metabolismo
11.
Stem Cells Int ; 2016: 5272498, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26697077

RESUMEN

Acinar transdifferentiation toward a duct-like phenotype constitutes the defining response of acinar cells to external stress signals and is considered to be the initial step in pancreatic carcinogenesis. Despite the requirement for oncogenic Kras in pancreatic cancer (PDAC) development, oncogenic Kras is not sufficient to drive pancreatic carcinogenesis beyond the level of premalignancy. Instead, secondary events, such as inflammation-induced signaling activation of the epidermal growth factor (EGFR) or induction of Sox9 expression, are required for tumor formation. Herein, we aimed to dissect the mechanism that links EGFR signaling to Sox9 gene expression during acinar-to-ductal metaplasia in pancreatic tissue adaptation and PDAC initiation. We show that the inflammatory transcription factor NFATc4 is highly induced and localizes in the nucleus in response to inflammation-induced EGFR signaling. Moreover, we demonstrate that NFATc4 drives acinar-to-ductal conversion and PDAC initiation through direct transcriptional induction of Sox9. Therefore, strategies designed to disrupt NFATc4 induction might be beneficial in the prevention or therapy of PDAC.

12.
Mol Cancer Ther ; 15(3): 491-502, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26823495

RESUMEN

We aimed to investigate the mechanistic, functional, and therapeutic role of glycogen synthase kinase 3ß (GSK-3ß) in the regulation and activation of the proinflammatory oncogenic transcription factor nuclear factor of activated T cells (NFATc2) in pancreatic cancer. IHC, qPCR, immunoblotting, immunofluorescence microscopy, and proliferation assays were used to analyze mouse and human tissues and cell lines. Protein-protein interactions and promoter regulation were analyzed by coimmunoprecipitation, DNA pulldown, reporter, and ChIP assays. Preclinical assays were performed using a variety of pancreatic cancer cells lines, xenografts, and a genetically engineered mouse model (GEMM). GSK-3ß-dependent SP2 phosphorylation mediates NFATc2 protein stability in the nucleus of pancreatic cancer cells stimulating pancreatic cancer growth. In addition to protein stabilization, GSK-3ß also maintains NFATc2 activation through a distinct mechanism involving stabilization of NFATc2-STAT3 complexes independent of SP2 phosphorylation. For NFATc2-STAT3 complex formation, GSK-3ß-mediated phosphorylation of STAT3 at Y705 is required to stimulate euchromatin formation of NFAT target promoters, such as cyclin-dependent kinase-6, which promotes tumor growth. Finally, preclinical experiments suggest that targeting the NFATc2-STAT3-GSK-3ß module inhibits proliferation and tumor growth and interferes with inflammation-induced pancreatic cancer progression in Kras(G12D) mice. In conclusion, we describe a novel mechanism by which GSK-3ß fine-tunes NFATc2 and STAT3 transcriptional networks to integrate upstream signaling events that govern pancreatic cancer progression and growth. Furthermore, the therapeutic potential of GSK-3ß is demonstrated for the first time in a relevant Kras and inflammation-induced GEMM for pancreatic cancer.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Inflamación/metabolismo , Factores de Transcripción NFATC/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Transducción de Señal , Animales , Sitios de Unión , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Expresión Génica , Genes ras , Humanos , Ratones , Ratones Noqueados , Complejos Multiproteicos/metabolismo , Factores de Transcripción NFATC/genética , Motivos de Nucleótidos , Neoplasias Pancreáticas/genética , Fosforilación , Unión Proteica , Estabilidad Proteica , Factor de Transcripción STAT3/metabolismo
13.
Cancer Discov ; 4(6): 688-701, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24694735

RESUMEN

UNLABELLED: Cancer-associated inflammation is a molecular key feature in pancreatic ductal adenocarcinoma. Oncogenic KRAS in conjunction with persistent inflammation is known to accelerate carcinogenesis, although the underlying mechanisms remain poorly understood. Here, we outline a novel pathway whereby the transcription factors NFATc1 and STAT3 cooperate in pancreatic epithelial cells to promote Kras(G12D)-driven carcinogenesis. NFATc1 activation is induced by inflammation and itself accelerates inflammation-induced carcinogenesis in Kras(G12D) mice, whereas genetic or pharmacologic ablation of NFATc1 attenuates this effect. Mechanistically, NFATc1 complexes with STAT3 for enhancer-promoter communications at jointly regulated genes involved in oncogenesis, for example, Cyclin, EGFR and WNT family members. The NFATc1-STAT3 cooperativity is operative in pancreatitis-mediated carcinogenesis as well as in established human pancreatic cancer. Together, these studies unravel new mechanisms of inflammatory-driven pancreatic carcinogenesis and suggest beneficial effects of chemopreventive strategies using drugs that are currently available for targeting these factors in clinical trials. SIGNIFICANCE: Our study points to the existence of an oncogenic NFATc1-STAT3 cooperativity that mechanistically links inflammation with pancreatic cancer initiation and progression. Because NFATc1-STAT3 nucleoprotein complexes control the expression of gene networks at the intersection of inflammation and cancer, our study has significant relevance for potentially managing pancreatic cancer and other inflammatory-driven malignancies.


Asunto(s)
Factores de Transcripción NFATC/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatitis/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Línea Celular Tumoral , Ceruletida , Regulación Neoplásica de la Expresión Génica , Ratones Transgénicos , Factores de Transcripción NFATC/genética , Neoplasias Pancreáticas/genética , Pancreatitis/inducido químicamente , Pancreatitis/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Factor de Transcripción STAT3/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA