Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 184(22): 5635-5652.e29, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34653350

RESUMEN

While prime editing enables precise sequence changes in DNA, cellular determinants of prime editing remain poorly understood. Using pooled CRISPRi screens, we discovered that DNA mismatch repair (MMR) impedes prime editing and promotes undesired indel byproducts. We developed PE4 and PE5 prime editing systems in which transient expression of an engineered MMR-inhibiting protein enhances the efficiency of substitution, small insertion, and small deletion prime edits by an average 7.7-fold and 2.0-fold compared to PE2 and PE3 systems, respectively, while improving edit/indel ratios by 3.4-fold in MMR-proficient cell types. Strategic installation of silent mutations near the intended edit can enhance prime editing outcomes by evading MMR. Prime editor protein optimization resulted in a PEmax architecture that enhances editing efficacy by 2.8-fold on average in HeLa cells. These findings enrich our understanding of prime editing and establish prime editing systems that show substantial improvement across 191 edits in seven mammalian cell types.


Asunto(s)
Edición Génica , Sistemas CRISPR-Cas/genética , Línea Celular , ADN/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Femenino , Genes Dominantes , Genoma Humano , Humanos , Masculino , Modelos Biológicos , Homólogo 1 de la Proteína MutL/genética , Mutación/genética , ARN/metabolismo , Reproducibilidad de los Resultados
2.
J Neurosci ; 39(47): 9294-9305, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31591157

RESUMEN

Tuberous sclerosis complex (TSC) is a genetic disorder caused by mutations in TSC1 or TSC2 Patients frequently have epilepsy, autism spectrum disorder, and/or intellectual disability, as well as other systemic manifestations. In this study, we differentiated human induced pluripotent stem cells (iPSCs) from a female patient with TSC with one or two mutations in TSC2 into neurons using induced expression of NGN2 to examine neuronal dysregulation associated with the neurological symptoms in TSC. Using this method, neuronal differentiation was comparable between the three genotypes of iPSCs. We observed that TSC2+/- neurons show mTOR complex 1 (mTORC1) hyperactivation and associated increased cell body size and process outgrowth, as well as exacerbation of the abnormalities by loss of the second allele of TSC2 in TSC2-/- neurons. Interestingly, iPSC-derived neurons with either a single or biallelic mutation in TSC2 demonstrated hypersynchrony and downregulation of FMRP targets. However, only neurons with biallelic mutations of TSC2 demonstrated hyperactivity and transcriptional dysregulation observed in cortical tubers. These data demonstrate that loss of one allele of TSC2 is sufficient to cause some morphological and physiological changes in human neurons but that biallelic mutations in TSC2 are necessary to induce gene expression dysregulation present in cortical tubers. Finally, we found that treatment of iPSC-derived neurons with rapamycin reduced neuronal activity and partially reversed gene expression abnormalities, demonstrating that mTOR dysregulation contributes to both phenotypes. Therefore, biallelic mutations in TSC2 and associated molecular dysfunction, including mTOR hyperactivation, may play a role in the development of cortical tubers.SIGNIFICANCE STATEMENT In this study, we examined neurons derived from induced pluripotent stem cells with two, one, or no functional TSC2 (tuberous sclerosis complex 2) alleles and found that loss of one or both alleles of TSC2 results in mTORC1 hyperactivation and specific neuronal abnormalities. However, only biallelic mutations in TSC2 resulted in elevated neuronal activity and upregulation of cell adhesion genes that is also observed in cortical tubers. These data suggest that loss of heterozygosity of TSC1 or TSC2 may play an important role in the development of cortical tubers, and potentially epilepsy, in patients with TSC.


Asunto(s)
Alelos , Células Madre Pluripotentes Inducidas/fisiología , Mutación/genética , Neuronas/fisiología , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Esclerosis Tuberosa/genética , Células Cultivadas , Femenino , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Neuronas/patología , Esclerosis Tuberosa/patología
3.
Hum Mol Genet ; 23(9): 2364-73, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24363065

RESUMEN

Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two neurodevelopmental disorders most often caused by deletions of the same region of paternally inherited and maternally inherited human chromosome 15q, respectively. AS is a single gene disorder, caused by the loss of function of the ubiquitin ligase E3A (UBE3A) gene, while PWS is still considered a contiguous gene disorder. Rare individuals with PWS who carry atypical microdeletions on chromosome 15q have narrowed the critical region for this disorder to a 108 kb region that includes the SNORD116 snoRNA cluster and the Imprinted in Prader-Willi (IPW) non-coding RNA. Here we report the derivation of induced pluripotent stem cells (iPSCs) from a PWS patient with an atypical microdeletion that spans the PWS critical region. We show that these iPSCs express brain-specific portions of the transcripts driven by the PWS imprinting center, including the UBE3A antisense transcript (UBE3A-ATS). Furthermore, UBE3A expression is imprinted in most of these iPSCs. These data suggest that UBE3A imprinting in neurons only requires UBE3A-ATS expression, and no other neuron-specific factors. These data also suggest that a boundary element lying within the PWS critical region prevents UBE3A-ATS expression in non-neural tissues.


Asunto(s)
Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Eliminación de Secuencia/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Línea Celular , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Proc Natl Acad Sci U S A ; 107(41): 17668-73, 2010 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-20876107

RESUMEN

Angelman syndrome (AS) and Prader-Willi syndrome (PWS) are neurodevelopmental disorders of genomic imprinting. AS results from loss of function of the ubiquitin protein ligase E3A (UBE3A) gene, whereas the genetic defect in PWS is unknown. Although induced pluripotent stem cells (iPSCs) provide invaluable models of human disease, nuclear reprogramming could limit the usefulness of iPSCs from patients who have AS and PWS should the genomic imprint marks be disturbed by the epigenetic reprogramming process. Our iPSCs derived from patients with AS and PWS show no evidence of DNA methylation imprint erasure at the cis-acting PSW imprinting center. Importantly, we find that, as in normal brain, imprinting of UBE3A is established during neuronal differentiation of AS iPSCs, with the paternal UBE3A allele repressed concomitant with up-regulation of the UBE3A antisense transcript. These iPSC models of genomic imprinting disorders will facilitate investigation of the AS and PWS disease processes and allow study of the developmental timing and mechanism of UBE3A repression in human neurons.


Asunto(s)
Síndrome de Angelman/genética , Diferenciación Celular/fisiología , Impresión Genómica/genética , Modelos Biológicos , Células Madre Pluripotentes/fisiología , Síndrome de Prader-Willi/genética , Cartilla de ADN/genética , Electrofisiología , Humanos , Inmunohistoquímica , Neuronas/fisiología , Reacción en Cadena de la Polimerasa , Ubiquitina-Proteína Ligasas/genética
5.
Front Psychiatry ; 13: 924956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405918

RESUMEN

16p13.11 copy number variants (CNVs) have been associated with autism, schizophrenia, psychosis, intellectual disability, and epilepsy. The majority of 16p13.11 deletions or duplications occur within three well-defined intervals, and despite growing knowledge of the functions of individual genes within these intervals, the molecular mechanisms that underlie commonly observed clinical phenotypes remain largely unknown. Patient-derived, induced pluripotent stem cells (iPSCs) provide a platform for investigating the morphological, electrophysiological, and gene-expression changes that result from 16p13.11 CNVs in human-derived neurons. Patient derived iPSCs with varying sizes of 16p13.11 deletions and familial controls were differentiated into cortical neurons for phenotypic analysis. High-content imaging and morphological analysis of patient-derived neurons demonstrated an increase in neurite branching in patients compared with controls. Whole-transcriptome sequencing revealed expression level changes in neuron development and synaptic-related gene families, suggesting a defect in synapse formation. Subsequent quantification of synapse number demonstrated increased numbers of synapses on neurons derived from early-onset patients compared to controls. The identification of common phenotypes among neurons derived from patients with overlapping 16p13.11 deletions will further assist in ascertaining common pathways and targets that could be utilized for screening drug candidates. These studies can help to improve future treatment options and clinical outcomes for 16p13.11 deletion patients.

6.
Stem Cell Reports ; 16(6): 1446-1457, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33861989

RESUMEN

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) and their differentiation into neural lineages is a revolutionary experimental system for studying neurological disorders, including intellectual and developmental disabilities (IDDs). However, issues related to variability and reproducibility have hindered translating preclinical findings into drug discovery. Here, we identify areas for improvement by conducting a comprehensive review of 58 research articles that utilized iPSC-derived neural cells to investigate genetically defined IDDs. Based upon these findings, we propose recommendations for best practices that can be adopted by research scientists as well as journal editors.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Variación Genética , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual/etiología , Humanos , Modelos Biológicos , Neuronas , Reproducibilidad de los Resultados
7.
Stem Cell Res ; 53: 102276, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33714067

RESUMEN

CDKL5 Deficiency Disorder (CDD) is a rare X-linked monogenic developmental encephalopathy that is estimated to affect 1:42,000 live births. CDD is caused by pathogenic variants in the CDKL5 gene and is observed in both male and female patients. Here, we report the generation and characterization of induced pluripotent stem cells (iPSCs) derived from fibroblasts of six unrelated CDD patients-three males and three females. These patients are clinically diagnosed to present with classic CDD phenotypes, including refractory epilepsy and global developmental delay, and are being followed in a longitudinal clinical study.


Asunto(s)
Síndromes Epilépticos , Células Madre Pluripotentes Inducidas , Espasmos Infantiles , Femenino , Humanos , Masculino , Proteínas Serina-Treonina Quinasas/genética , Espasmos Infantiles/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-32748853

RESUMEN

Medication non-adherence is a concern in chronic disease management. Currently, there is no scale that characterizes sufficient non-adherent reasons for practical use in the Chinese population. This study developed and validated the Chinese version of the Medication Adherence Reasons Scale (ChMAR-Scale) and described non-adherence reasons in adult patients taking blood pressure medicine in Taiwan. A forward-backward procedure was used to translate the original MAR-Scale, and new items pertinent to cultural differences were added. Patients aged above 20 years old who were taking blood pressure medicine were recruited from a regional hospital and eight community pharmacies in the Taipei metropolitan area. Data analyses were conducted with IBM SPSS 19 (Armonk, NY, USA). Exploratory factor analysis revealed six domains, including belief, self-perception, forgetfulness, management, availability, and miscellaneous issues, with Cronbach's alphas ranging from 0.649 to 0.852, item-total correlations ranging from 0.362 to 0.719, and factor loadings ranging from 0.365 to 0.775. Criterion-related validity with the visual analog scale and two global items were 0.525, 0.436, and 0.502. Forgetfulness, belief issues, and self-perception issues were the most common non-adherence reasons. In conclusion, the ChMAR-Scale showed good psychometric properties and identified more reasons for medication non-adherence than other existing scales. Healthcare providers should be vigilant of these problems while consulting patients.


Asunto(s)
Cumplimiento de la Medicación/etnología , Encuestas y Cuestionarios/normas , Adulto , Análisis Factorial , Humanos , Masculino , Cumplimiento de la Medicación/psicología , Persona de Mediana Edad , Psicometría , Reproducibilidad de los Resultados , Taiwán
9.
Mol Biol Cell ; 31(7): 511-519, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31774722

RESUMEN

Retrograde membrane trafficking from plasma membrane to Golgi and endoplasmic reticulum typifies one of the key sorting steps emerging from the early endosome that affects cell surface and intracellular protein dynamics underlying cell function. While some cell surface proteins and lipids are known to sort retrograde, there are few effective methods to quantitatively measure the extent or kinetics of these events. Here we took advantage of the well-known retrograde trafficking of cholera toxin and newly defined split fluorescent protein technology to develop a quantitative, sensitive, and effectively real-time single-cell flow cytometry assay for retrograde membrane transport. The approach can be applied in high throughput to elucidate the underlying biology of membrane traffic and how endosomes adapt to the physiologic needs of different cell types and cell states.


Asunto(s)
Bioensayo/métodos , Membrana Celular/metabolismo , Análisis de la Célula Individual/métodos , Transporte Biológico , Toxina del Cólera/metabolismo , Enfermedad , Retículo Endoplásmico/metabolismo , Fluorescencia , Células HEK293 , Humanos , Células K562
10.
Cell Rep ; 28(12): 3224-3237.e5, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31533043

RESUMEN

Dysregulated axonal trafficking of mitochondria is linked to neurodegenerative disorders. We report a high-content screen for small-molecule regulators of the axonal transport of mitochondria. Six compounds enhanced mitochondrial transport in the sub-micromolar range, acting via three cellular targets: F-actin, Tripeptidyl peptidase 1 (TPP1), or Aurora Kinase B (AurKB). Pharmacological inhibition or small hairpin RNA (shRNA) knockdown of each target promotes mitochondrial axonal transport in rat hippocampal neurons and induced pluripotent stem cell (iPSC)-derived human cortical neurons and enhances mitochondrial transport in iPSC-derived motor neurons from an amyotrophic lateral sclerosis (ALS) patient bearing one copy of SOD1A4V mutation. Our work identifies druggable regulators of axonal transport of mitochondria, provides broadly applicable methods for similar image-based screens, and suggests that restoration of proper axonal trafficking of mitochondria can be achieved in human ALS neurons.


Asunto(s)
Aminopeptidasas/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Aurora Quinasa B/metabolismo , Axones/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Hipocampo/metabolismo , Mitocondrias/metabolismo , Serina Proteasas/metabolismo , Aminopeptidasas/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Aurora Quinasa B/genética , Axones/patología , Transporte Biológico Activo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Femenino , Células HEK293 , Hipocampo/patología , Humanos , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/patología , Ratas , Ratas Sprague-Dawley , Serina Proteasas/genética , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Tripeptidil Peptidasa 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA