Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(1): 130-139, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38150297

RESUMEN

Photothermal immunotherapy has become a promising strategy for tumor treatment. However, the intrinsic drawbacks like light instability, poor immunoadjuvant effect, and poor accumulation of conventional inorganic or organic photothermal agents limit their further applications. Based on the superior carrying capacity and active tumor targeting property of living bacteria, an immunoadjuvant-intensified and engineered tumor-targeting bacterium was constructed to achieve effective photothermal immunotherapy. Specifically, immunoadjuvant imiquimod (R837)-loaded thermosensitive liposomes (R837@TSL) were covalently decorated onto Rhodobacter sphaeroides (R.S) to obtain nanoimmunoadjuvant-armed bacteria (R.S-R837@TSL). The intrinsic photothermal property of R.S combined R837@TSL to achieve in situ near-infrared (NIR) laser-controlled release of R837. Meanwhile, tumor immunogenic cell death (ICD) caused by photothermal effect of R.S-R837@TSL, synergizes with released immunoadjuvants to promote maturation of dendritic cells (DCs), which enhance cytotoxic T lymphocytes (CTLs) infiltration for further tumor eradication. The photosynthetic bacteria armed with immunoadjuvant-loaded liposomes provide a strategy for immunoadjuvant-enhanced cancer photothermal immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Rhodobacter sphaeroides , Humanos , Adyuvantes Inmunológicos , Liposomas , Imiquimod , Neoplasias/patología , Inmunoterapia , Línea Celular Tumoral , Fototerapia
2.
Nano Lett ; 24(15): 4602-4609, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38567988

RESUMEN

Oxygen vacancy (OV) engineering has been widely applied in different types of metal oxide-based photocatalytic reactions. Our study has shown that the redistributed OVs resulting from voids in CeO2 rods lead to significant differences in the band structure in space. The flat energy band within the highly crystallized bulk region hinders the recombination of photogenerated carrier pairs during the transfer process. The downward curved energy band in the surface region enhances the activation of the absorbents. Therefore, the localization of the band structure through crystal structure regionalization renders V-CeO2 capable of achieving efficient utilization of photogenerated carriers. Practically, the V-CeO2 rod shows a remarkable turnover number of 190.58 µmol g-1 h-1 in CO2 photoreduction, which is ∼9.4 times higher than that of D-CeO2 (20.46 µmol g-1 h-1). The designed modularization structure in our work is expected to provide important inspiration and guidance in coordinating the kinetic behavior of carriers in OV defect-rich photocatalysts.

3.
Nano Lett ; 23(12): 5595-5602, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37327393

RESUMEN

Chronic inflammation and hypoxia in the microenvironment of diabetic foot ulcers (DFUs) can result in sustained vascular impairment, hindering tissue regeneration. While both nitric oxide and oxygen have been shown to promote wound healing in DFUs through anti-inflammatory and neovascularization, there is currently no available therapy that delivers both. We present a novel hydrogel consisting of Weissella and Chlorella, which alternates between nitric oxide and oxygen production to reduce chronic inflammation and hypoxia. Further experiments indicate that the hydrogel accelerates wound closure, re-epithelialization, and angiogenesis in diabetic mice and improves the survival of skin grafts. This dual-gas therapy holds promise as a potential treatment option for the management of diabetic wounds.


Asunto(s)
Chlorella , Diabetes Mellitus Experimental , Pie Diabético , Animales , Ratones , Óxido Nítrico/uso terapéutico , Oxígeno , Diabetes Mellitus Experimental/terapia , Cicatrización de Heridas , Hidrogeles/uso terapéutico , Pie Diabético/terapia , Hipoxia , Inflamación
4.
Nano Lett ; 23(10): 4375-4383, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37159332

RESUMEN

Microorganism-mediated self-assembling of living formulations holds great promise for disease therapy. Here, we constructed a prebiotic-probiotic living capsule (PPLC) by coculturing probiotics (EcN) with Gluconacetobacter xylinus (G. xylinus) in a prebiotic-containing fermentation broth. Through shaking the culture, G. xylinus secretes cellulose fibrils that can spontaneously encapsulate EcN to form microcapsules under shear forces. Additionally, the prebiotic present in the fermentation broth is incorporated into the bacterial cellulose network through van der Waals forces and hydrogen bonding. Afterward, the microcapsules were transferred to a selective LB medium, which facilitated the colonization of dense probiotic colonies within them. The in vivo study demonstrated that PPLC-containing dense colonies of EcN can antagonize intestinal pathogens and restore microbiota homeostasis by showing excellent therapeutic performance in treating enteritis mice. The in situ self-assembly of probiotics and prebiotics-based living materials provides a promising platform for the treatment of inflammatory bowel disease.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Prebióticos , Animales , Ratones , Cápsulas , Técnicas de Cocultivo , Celulosa
5.
Environ Res ; 223: 115441, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36758917

RESUMEN

Two-dimensional La2Ti2O7 nanosheets with regular morphology and good dispersion were prepared by the hydrothermal method under a magnetic field. Zero-dimensional Pt quantum dots (Pt-QDs) were loaded on the La2Ti2O7 nanosheets. The electron-hole separation and carrier transfer in the Pt-loaded La2Ti2O7 nanosheets were significantly enhanced. The La2Ti2O7 nanosheets loaded with 3 wt% Pt-QDs exhibit the largest NO removal efficiency of 51% and less than 3.2 ppb NO2 intermediate pollutant in 30 min. The high photocatalytic ability was attributed to the surface plasmon resonance in Pt-QDs and the enhanced electron-hole separation. A large number of e-, h+, •OH and •O2- active species were formed on the surface of Pt-loaded La2Ti2O7 nanosheets under light irradiation. The conversion pathway from NO to NO3- was verified by the in situ diffuse reflectance infrared Fourier-transform spectroscopy and DFT calculation. This work supplies a feasible approach to responsive photocatalysts for efficient, stable, and selective NO removal avoiding the NO2 secondary pollutant.


Asunto(s)
Puntos Cuánticos , Puntos Cuánticos/química , Luz , Dióxido de Nitrógeno , Titanio
6.
Nano Lett ; 22(21): 8608-8617, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36259687

RESUMEN

The chemotherapeutic effectiveness of pancreatic ductal adenocarcinoma (PDAC) is severely hampered by insufficient intratumoral delivery of antitumor drugs. Here, we demonstrate that enhanced pancreatic cancer chemotherapy can be achieved by probiotic spore-based oral drug delivery system via gut-pancreas axis translocation. Clostridium butyricum spores resistant to harsh external stress are extracted as drug carriers, which are further covalently conjugated with gemcitabine-loaded mesoporous silicon nanoparticles (MGEM). The spore-based oral drug delivery system (SPORE-MGEM) migrates upstream into pancreatic tumors from the gut, which increases intratumoral drug accumulation by ∼3-fold compared with MGEM. In two orthotopic PDAC mice models, tumor growth is markedly suppressed by SPORE-MGEM without obvious side effects. Leveraging the biological contact of the gut-pancreas axis, this probiotic spore-based oral drug delivery system reveals a new avenue for enhancing PDAC chemotherapy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Probióticos , Ratones , Animales , Línea Celular Tumoral , Esporas Bacterianas , Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Sistemas de Liberación de Medicamentos , Páncreas/patología , Neoplasias Pancreáticas
7.
Nano Lett ; 22(21): 8735-8743, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36286590

RESUMEN

The chemotherapy efficacy of nanodrugs is restricted by poor tumor targeting and uptake. Here, an engineered biohybrid living material (designated as EcN@HPB) is constructed by integrating paclitaxel and BAY-876 bound human serum albumin nanodrugs (HPB) with Escherichia coli Nissle 1917 (EcN). Due to the inherent tumor tropism of EcN, EcN@HPB could actively target the tumor site and competitively deprive glucose through bacterial respiration. Thus, albumin would be used as an alternative nutrient source for tumor metabolism, which significantly promotes the internalization of HPB by tumor cells. Subsequently, BAY-876 internalized along with HPB nanodrugs would further depress glucose uptake of tumor cells via inhibiting glucose transporter 1 (GLUT1). Together, the decline of glucose bioavailability of tumor cells would activate and promote the macropinocytosis in an AMP-activated protein kinase (AMPK)-dependent manner, resulting in more uptake of HPB by tumor cells and boosting the therapeutic outcome of paclitaxel.


Asunto(s)
Infecciones por Escherichia coli , Nanopartículas , Neoplasias , Humanos , Disponibilidad Biológica , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosa/metabolismo , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Paclitaxel/farmacología , Paclitaxel/uso terapéutico
8.
Nanotechnology ; 33(42)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35817015

RESUMEN

Type II p-n heterojunction and direct Z-scheme heterojunction are identical staggered band alignments, but were reported ambiguously in many composite photocatalysts because their carriers migrate in opposite directions. In this research, metal oxides CuO, NiO and Co3O4-based heterojunctions with Na0.9Mg0.45Ti3.55O8(NMTO) were synthesized via a simple hydrothermal method. The CuO/NMTO heterojunction was demonstrated as a direct Z-scheme heterojunction, whereas the NiO/NMTO and Co3O4/NMTO heterojunctions showed type II p-n band alignment, distinguished by the direct observation of carrier migration under light illumination, and confirmed by the x-ray photoelectron spectroscopy, Mott-Schottky measurements, ultraviolet photoelectron spectra and capture experiments. These all heterojunctions enjoyed better photocatalytic performance to degrade methylene blue and antibiotics (Enrofloxacin, Metronidazole and tetracycline) than the pure NMTO, attributed to their effective separation of the photoinduced electron-hole pairs owing to the staggered band alignment. Prominently, the NiO/NMTO and Co3O4/NMTO p-n heterojunctions exhibited superior degradation ability to the CuO/NMTO Z-scheme heterojunction. The initial relative Fermi position of two semiconductors is the prerequisite to determine whether the p-n heterojunction or direct Z-scheme heterojunction is built because the electrons diffuse from one semiconductor with a higher Fermi level to another with a lower Fermi level while the holes diffuse reversely until a united Fermi level when they combine. The built-in electric field at the heterojunction interface is determined by the difference in the initial Fermi levels or work functions of two semiconductors, regulating the separation ability of photogenerated electrons and holes to affect the photocatalytic performance. Thus, the high difference in the initial Fermi levels of semiconductors is crucial in the development of heterojunctions with staggered band alignment to obtain high performance in photocatalytic reactions.

9.
Environ Res ; 211: 113118, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35307371

RESUMEN

Novel K0.8Ni0.4Ti1.6O4 (KNTO) nano bamboo leaves were prepared for the first time under a simple hydrothermal method with 3 M KOH at 320 °C over 80 min. Highly pure KNTO possessing layered structure was determined by X-ray diffraction (XRD) and high-resolution transmission electron microscope (HRTEM). Double absorption feature of KNTO semiconductor was revealed at band energies of 1.88 and 2.08 eV by the UV-vis diffuse reflectance spectra and confirmed by the photoluminescence (PL) spectra. The photocatalytic activity was explored by the photodegradation of MB organic dye. KNTO not only exhibits strong adsorptive ability on methylene blue (MB) in dark environment, but also possesses good photodegradation capability of 94% degradation in 60 min. Degradation mechanism revealed that the photogenerated holes play an essential role in the MB degradation process, which is confirmed by trapping experiments. The recycling experiments demonstrated very high recycling ability and durability of KNTO nano bamboo leaves, suggesting KNTO is a potential candidate for high efficiency organic pollutant removal in the wastewater treatment.


Asunto(s)
Contaminantes Ambientales , Titanio , Catálisis , Azul de Metileno/química , Fotólisis , Hojas de la Planta
10.
Chem Soc Rev ; 50(22): 12576-12615, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34605834

RESUMEN

Microorganisms have been extensively applied as active biotherapeutic agents or drug delivery vehicles for antitumor treatment because of their unparalleled bio-functionalities. Taking advantage of the living attributes of microorganisms, a new avenue has been opened in anticancer research. The integration of customized functional materials with living microorganisms has demonstrated unprecedented potential in solving existing questions and even conferring microorganisms with updated antitumor abilities and has also provided an innovative train of thought for enhancing the efficacy of microorganism-based tumor therapy. In this review, we have summarized the emerging development of customized materials-assisted microorganisms (MAMO) (including bacteria, viruses, fungi, microalgae, as well as their components) in tumor therapeutics with an emphasis on the rational utilization of chosen microorganisms and tailored materials, the ingenious design of biohybrid systems, and the efficacious antitumor mechanisms. The future perspectives and challenges in this field are also discussed.


Asunto(s)
Microalgas , Neoplasias , Virus , Bacterias , Hongos , Humanos , Neoplasias/tratamiento farmacológico
11.
Nano Lett ; 21(10): 4270-4279, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33955768

RESUMEN

Engineered bacteria are promising bioagents to synthesize antitumor drugs at tumor sites with the advantages of avoiding drug leakage and degradation during delivery. Here, we report an optically controlled material-assisted microbial system by biosynthesizing gold nanoparticles (AuNPs) on the surface of Shewanella algae K3259 (S. algae) to obtain Bac@Au. Leveraging the dual directional electron transport mechanism of S. algae, the hybrid biosystem enhances in situ synthesis of antineoplastic tetrodotoxin (TTX) for a promising antitumor effect. Because of tumor hypoxia-targeting feature of facultative anaerobic S. algae, Bac@Au selectively target and colonize at tumor. Upon light irradiation, photoelectrons produced by AuNPs deposited on bacterial surface are transferred into bacterial cytoplasm and participate in accelerated cell metabolism to increase the production of TTX for antitumor therapy. The optically controlled material-assisted microbial system enhances the efficiency of bacterial drug synthesis in situ and provides an antitumor strategy that could broaden conventional therapy boundaries.


Asunto(s)
Nanopartículas del Metal , Shewanella , Oro , Tetrodotoxina
12.
Angew Chem Int Ed Engl ; 59(48): 21562-21570, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32779303

RESUMEN

By leveraging the ability of Shewanella oneidensis MR-1 (S. oneidensis MR-1) to anaerobically catabolize lactate through the transfer of electrons to metal minerals for respiration, a lactate-fueled biohybrid (Bac@MnO2 ) was constructed by modifying manganese dioxide (MnO2 ) nanoflowers on the S. oneidensis MR-1 surface. The biohybrid Bac@MnO2 uses decorated MnO2 nanoflowers as electron receptor and the tumor metabolite lactate as electron donor to make a complete bacterial respiration pathway at the tumor sites, which results in the continuous catabolism of intercellular lactate. Additionally, decorated MnO2 nanoflowers can also catalyze the conversion of endogenous hydrogen peroxide (H2 O2 ) into generate oxygen (O2 ), which could prevent lactate production by downregulating hypoxia-inducible factor-1α (HIF-1α) expression. As lactate plays a critical role in tumor development, the biohybrid Bac@MnO2 could significantly inhibit tumor progression by coupling bacteria respiration with tumor metabolism.


Asunto(s)
Neoplasias del Colon/metabolismo , Compuestos de Manganeso/metabolismo , Óxidos/metabolismo , Shewanella/metabolismo , Animales , Línea Celular Tumoral , Neoplasias del Colon/patología , Regulación hacia Abajo , Humanos , Peróxido de Hidrógeno/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ácido Láctico/metabolismo , Compuestos de Manganeso/química , Ratones , Nanopartículas/química , Nanopartículas/metabolismo , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Óxidos/química , Oxígeno/metabolismo , Tamaño de la Partícula , Propiedades de Superficie
13.
Tumour Biol ; 35(5): 4147-51, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24379140

RESUMEN

Case-control studies on the association between mouse double-minute 2 homolog (MDM2) SNP309T>G polymorphism and hepatocellular carcinoma have provided either controversial or inconclusive results. To clarify the effect of MDM2 SNP309T>G polymorphism on the risk of hepatocellular carcinoma, a meta-analysis of all case-control observational studies was performed. Pooled odds ratios (ORs) for various polymorphisms were estimated using random and fixed effects models. The Q-statistic was used to evaluate the homogeneity, and Egger and Begg tests were used to assess publication bias. Overall, the MDM2 SNP309T>G polymorphism was associated with a risk of hepatocellular carcinoma (OR = 0.68; 95% CI = 0.54-0.85 for allele contrast, p = 0.0005, phet = 0.004). The contrast of homozygotes and the recessive and dominant models produced the same pattern of results as the allele contrast. In the analysis stratified by ethnicity, significant associations were found in the Caucasian population in all of the genetic models. In addition, heterogeneity disappeared in subgroups of Caucasian subjects. Our pooled data suggest evidence for a major role of MDM2 SNP309T>G polymorphism in the carcinogenesis of hepatocellular carcinoma, especially among Caucasian populations.


Asunto(s)
Carcinoma Hepatocelular/genética , Predisposición Genética a la Enfermedad , Neoplasias Hepáticas/genética , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas c-mdm2/genética , Humanos , Sesgo de Publicación , Riesgo
14.
Adv Mater ; 36(25): e2402532, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563503

RESUMEN

Due to inherent differences in cellular composition and metabolic behavior with host cells, tumor-harbored bacteria can discriminatorily affect tumor immune landscape. However, the mechanisms by which intracellular bacteria affect antigen presentation process between tumor cells and antigen-presenting cells (APCs) are largely unknown. The invasion behavior of attenuated Salmonella VNP20009 (VNP) into tumor cells is investigated and an attempt is made to modulate this behavior by modifying positively charged polymers on the surface of VNP. It is found that non-toxic chitosan oligosaccharide (COS) modified VNP (VNP@COS) bolsters the formation of gap junction between tumor cells and APCs by enhancing the ability of VNP to infect tumor cells. On this basis, a bacterial biohybrid is designed to promote in situ antigen cross-presentation through intracellular bacteria induced gap junction. This bacterial biohybrid also enhances the expression of major histocompatibility complex class I molecules on the surface of tumor cells through the incorporation of Mdivi-1 coupled with VNP@COS. This strategic integration serves to heighten the immunogenic exposure of tumor antigens; while, preserving the cytotoxic potency of T cells. A strategy is proposed to precisely controlling the function and local effects of microorganisms within tumors.


Asunto(s)
Presentación de Antígeno , Quitosano , Uniones Comunicantes , Salmonella , Humanos , Quitosano/química , Línea Celular Tumoral , Uniones Comunicantes/metabolismo , Salmonella/inmunología , Animales , Reactividad Cruzada , Ratones , Oligosacáridos/química , Neoplasias/inmunología , Neoplasias/patología , Células Presentadoras de Antígenos/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología
15.
Skeletal Radiol ; 42(9): 1235-44, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23754734

RESUMEN

OBJECTIVE: To characterize the temporal changes in marrow lipids content and adipocytes in the development of glucocorticoid-induced osteoporosis (GIOP) in rabbits using MR spectroscopy. SUBJECTS AND METHODS: Twenty 20-week-old female rabbits were randomized to a control group and a GIOP group equally. Marrow lipids fraction and bone mineral density at the left proximal femur and L3-L4 vertebrae were measured by MR spectroscopy and dual-energy X-ray absorptiometry at week 0, 4, 8, and 12. Marrow adipocytes were quantitatively evaluated by histopathology. RESULTS: Marrow adiposity in the GIOP group showed a significant increase over time, with a variation of marrow lipids fraction (+35.9 %) at week 4 from baseline and it was maintained until week 12 (+75.2 %, p < 0.001 for all). The GIOP group demonstrated continuous deterioration of bone with significant difference between the two groups at week 8, followed by increased marrow fat with significant difference at week 4 (p < 0.05 for all). In comparison with the controls, marrow adipocyte density in the GIOP group increased by 57.1 % at week 8 and 35.4 % at week 12, respectively. A reduction (-13.3 %) in adipocyte mean diameter at week 8 (but an increase (+22.7 %) at week 12) were observed in the GIOP group compared with the control group (p < 0.05 for all). There was significant difference between two periods (p = 0.023) in adipocyte mean diameter in the GIOP group. The percentage area of marrow adipocytes in the GIOP group was 62.8 ± 8.7 % at week 8 and 79.2 ± 7.7 % at week 12, both of which were significantly higher than those of the controls (p < 0.05 for all). CONCLUSIONS: Marrow adipogenesis is synchronized with bone loss in the development of GIOP, which was characterized by a significant increase in the number of small-sized marrow adipocytes in the relatively early stage and concomitant volume increase later on. MR spectroscopy appears to be the most powerful tool for detecting the sequential changes in marrow lipid content.


Asunto(s)
Adipocitos/metabolismo , Médula Ósea/metabolismo , Glucocorticoides , Metabolismo de los Lípidos , Espectroscopía de Resonancia Magnética/métodos , Osteoporosis/inducido químicamente , Osteoporosis/metabolismo , Adipocitos/efectos de los fármacos , Animales , Médula Ósea/efectos de los fármacos , Células Cultivadas , Femenino , Conejos , Rotura/metabolismo
16.
Nanoscale Horiz ; 8(4): 489-498, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36786021

RESUMEN

Combinations of multiple enzymes for cascade catalysis have been widely applied in biomedicine, but the integration of a natural bioenzyme with an inorganic nanozyme is less developed. Inspired by the abundant content of superoxide dismutase (SOD) in Spirulina platensis (SP), we establish an integrated cascade catalysis for anti-inflammation therapy by decorating catalase (CAT)-biomimetic ceria nanoparticles (CeO2) onto the SP surface via electrostatic interaction to build microalgae-based biohybrids. The biohybrids exhibit combined catalytical competence for preferentially transforming superoxide anion radicals (O2˙-) to hydrogen peroxide (H2O2), and subsequently catalyzing H2O2 disproportionation to water and oxygen. In ulcerative colitis and Crohn's disease, the biohybrids reveal a satisfactory therapeutic effect owing to the synergistic reactive oxygen species (ROS)-scavenging capacity, suggesting a new train of thought for enzyme-based biomedical application.


Asunto(s)
Microalgas , Peróxido de Hidrógeno , Superóxidos , Superóxido Dismutasa , Antiinflamatorios/uso terapéutico , Catálisis
17.
J Control Release ; 353: 591-610, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36503071

RESUMEN

Intracellular Methicillin-Resistant Staphylococcus aureus (MRSA) remains a major factor of refractory and recurrent infections, which cannot be well addressed by antibiotic therapy. Here, we design a cellular infectious microenvironment-activatable polymeric nano-system to mediate targeted intracellular drug delivery for macrophage reprogramming and intracellular MRSA eradication. The polymeric nano-system is composed of a ferrocene-decorated polymeric nanovesicle formulated from poly(ferrocenemethyl methacrylate)-block-poly(2-methacryloyloxyethyl phosphorylcholine) (PFMMA-b-PMPC) copolymer with co-encapsulation of clofazimine (CFZ) and interferon-γ (IFN-γ). The cellular-targeting PMPC motifs render specific internalization by macrophages and allow efficient intracellular accumulation. Following the internalization, the ferrocene-derived polymer backbone sequentially undergoes hydrophobic-to-hydrophilic transition, charge reversal and Fe release in response to intracellular hydrogen peroxide over-produced upon infection, eventually triggering endosomal escape and on-site cytosolic drug delivery. The released IFN-γ reverses the immunosuppressive status of infected macrophages by reprogramming anti-inflammatory M2 to pro-inflammatory M1 phenotype. Meanwhile, intracellular Fe2+-mediated Fenton reaction together with antibiotic CFZ contributes to increased intracellular hydroxyl radical (•OH) generation. Ultimately, the nano-system achieves robust potency in ablating intracellular MRSA and antibiotic-tolerant persisters by synchronous immune modulation and efficient •OH killing, providing an innovative train of thought for intracellular MRSA control.


Asunto(s)
Antibacterianos , Macrófagos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Interferón gamma , Macrófagos/inmunología , Metalocenos/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/inmunología , Polímeros/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/inmunología , Nanoestructuras/uso terapéutico
18.
Biomaterials ; 296: 122072, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36878091

RESUMEN

Alcohol intoxication causes serious diseases, whereas current treatments are mostly supportive and unable to convert alcohol into nontoxic products in the digestive tract. To address this issue, an oral intestinal-coating coacervate antidote containing acetic acid bacteria (AAB) and sodium alginate (SA) mixture was constructed. After oral administration, SA reduces absorption of ethanol and promotes the proliferation of AAB, and AAB converts ethanol to acetic acid or carbon dioxide and water by two sequential catalytic reactions in the presence of membrane-bound alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). In vivo study shows that the bacteria-based coacervate antidote can significantly reduce the blood alcohol concentration (BAC) and effectively alleviates alcoholic liver injury in mice. Given the convenience and effectiveness of oral administration, AAB/SA can be used as a promising candidate antidote for relieving alcohol-induced acute liver injury.


Asunto(s)
Intoxicación Alcohólica , Antídotos , Ratones , Animales , Antídotos/farmacología , Antídotos/uso terapéutico , Nivel de Alcohol en Sangre , Etanol/farmacología , Hígado , Aldehído Deshidrogenasa/farmacología
19.
Adv Sci (Weinh) ; 10(4): e2205480, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36479844

RESUMEN

Systematic administration of antibiotics to treat infections often leads to the rapid evolution and spread of multidrug-resistant bacteria. Here, an in situ-formed biotherapeutic gel that controls multidrug-resistant bacterial infections and accelerates wound healing is reported. This biotherapeutic gel is constructed by incorporating stable microbial communities (kombucha) capable of producing antimicrobial substances and organic acids into thermosensitive Pluronic F127 (polyethylene-polypropylene glycol) solutions. Furthermore, it is found that the stable microbial communities-based biotherapeutic gel possesses a broad antimicrobial spectrum and strong antibacterial effects in diverse pathogenic bacteria-derived xenograft infection models, as well as in patient-derived multidrug-resistant bacterial xenograft infection models. The biotherapeutic gel system considerably outperforms the commercial broad-spectrum antibacterial gel (0.1% polyaminopropyl biguanide) in pathogen removal and infected wound healing. Collectively, this biotherapeutic strategy of exploiting stable symbiotic consortiums to repel pathogens provides a paradigm for developing efficient antibacterial biomaterials and overcomes the failure of antibiotics to treat multidrug-resistant bacterial infections.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Poloxaleno/farmacología , Infecciones Bacterianas/tratamiento farmacológico
20.
Adv Mater ; 35(38): e2302551, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37310059

RESUMEN

Local lung microbiota is closely associated with lung tumorigenesis and therapeutic response. It is found that lung commensal microbes induce chemoresistance in lung cancer by directly inactivating therapeutic drugs via biotransformation. Accordingly, an inhalable microbial capsular polysaccharide (CP)-camouflaged gallium-polyphenol metal-organic network (MON) is designed to eliminate lung microbiota and thereby abrogate microbe-induced chemoresistance. As a substitute for iron uptake, Ga3+ released from MON acts as a "Trojan horse" to disrupt bacterial iron respiration, effectively inactivating multiple microbes. Moreover, CP cloaks endow MON with reduced immune clearance by masquerading as normal host-tissue molecules, significantly increasing residence time in lung tissue for enhanced antimicrobial efficacy. In multiple lung cancer mice models, microbe-induced drug degradation is remarkably inhibited when drugs are delivered by antimicrobial MON. Tumor growth is sufficiently suppressed and mouse survival is prolonged. The work develops a novel microbiota-depleted nanostrategy to overcome chemoresistance in lung cancer by inhibiting local microbial inactivation of therapeutic drugs.


Asunto(s)
Antiinfecciosos , Galio , Neoplasias Pulmonares , Microbiota , Nanopartículas , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Polifenoles , Pulmón/metabolismo , Hierro , Neoplasias Pulmonares/tratamiento farmacológico , Polisacáridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA