Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 25(Suppl 1): 401, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658824

RESUMEN

BACKGROUND: Most of the important biological mechanisms and functions of transmembrane proteins (TMPs) are realized through their interactions with non-transmembrane proteins(nonTMPs). The interactions between TMPs and nonTMPs in cells play vital roles in intracellular signaling, energy metabolism, investigating membrane-crossing mechanisms, correlations between disease and drugs. RESULTS: Despite the importance of TMP-nonTMP interactions, the study of them remains in the wet experimental stage, lacking specific and comprehensive studies in the field of bioinformatics. To fill this gap, we performed a comprehensive statistical analysis of known TMP-nonTMP interactions and constructed a deep learning-based predictor to identify potential interactions. The statistical analysis describes known TMP-nonTMP interactions from various perspectives, such as distributions of species and protein families, enrichment of GO and KEGG pathways, as well as hub proteins and subnetwork modules in the PPI network. The predictor implemented by an end-to-end deep learning model can identify potential interactions from protein primary sequence information. The experimental results over the independent validation demonstrated considerable prediction performance with an MCC of 0.541. CONCLUSIONS: To our knowledge, we were the first to focus on TMP-nonTMP interactions. We comprehensively analyzed them using bioinformatics methods and predicted them via deep learning-based solely on their sequence. This research completes a key link in the protein network, benefits the understanding of protein functions, and helps in pathogenesis studies of diseases and associated drug development.


Asunto(s)
Biología Computacional , Proteínas de la Membrana , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Biología Computacional/métodos , Aprendizaje Profundo , Humanos , Mapas de Interacción de Proteínas
2.
Int J Mol Sci ; 25(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39273160

RESUMEN

Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder characterized by cognitive decline and neuronal loss, representing a most challenging health issue. We present a computational analysis of transcriptomic data of AD tissues vs. healthy controls, focused on the elucidation of functional roles played by long non-coding RNAs (lncRNAs) throughout the AD progression. We first assembled our own lncRNA transcripts from the raw RNA-Seq data generated from 527 samples of the dorsolateral prefrontal cortex, resulting in the identification of 31,574 novel lncRNA genes. Based on co-expression analyses between mRNAs and lncRNAs, a co-expression network was constructed. Maximal subnetworks with dense connections were identified as functional clusters. Pathway enrichment analyses were conducted over mRNAs and lncRNAs in each cluster, which served as the basis for the inference of functional roles played by lncRNAs involved in each of the key steps in an AD development model that we have previously built based on transcriptomic data of protein-encoding genes. Detailed information is presented about the functional roles of lncRNAs in activities related to stress response, reprogrammed metabolism, cell polarity, and development. Our analyses also revealed that lncRNAs have the discerning power to distinguish between AD samples of each stage and healthy controls. This study represents the first of its kind.


Asunto(s)
Enfermedad de Alzheimer , Redes Reguladoras de Genes , ARN Largo no Codificante , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , ARN Largo no Codificante/genética , Humanos , Transcriptoma , Perfilación de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación de la Expresión Génica , Biología Computacional/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA