Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 26(14): 18597-18607, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-30114036

RESUMEN

Illumination uniformity in photolithography systems determines the dimensional difference across the entire lithographic substrate. However, traditional lithography system relies on expensive and complex illumination system for achieving uniform illumination. In this paper, we propose a simple and cost-effective method based on the modulation of digital micromirror device to improve illumination uniformity. The modulation according to a digital mask achieved via an iteration program improves the uniformity to be above 95%. We demonstrate the effectiveness of the method by experimentally fabricating a linear grating. By implementing this method, the maximum dimensional difference is decreased from 3.3µm to 0.3µm. Further simulations indicate that higher uniformity is achievable once the field of view on the DMD is divided into smaller subregions.

2.
Opt Express ; 25(18): 21958-21968, 2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-29041486

RESUMEN

The resolution of digital micro-mirror device (DMD) scanning lithography is limited in the transverse direction (the scanning direction is vertical) as a result of the compacted size of the DMD micro-mirror and the low magnification of the projection lens. Above-stated restrictions lead to an unsatisfactory saw-tooth edge (size ~one DMD pixel) after the lithography process within all directions except for the scanning orientation. In order to smooth the edge, an optimized sub-pattern construction method, described as the combination of wobulation techniques and the continuous scanning lithography process, is proposed. Afterward, lithography experiments were implemented by introducing the wobulation techniques within the DMD scanning lithography system. The experimental results show that the saw-tooth edge is reduced to nearly 0.5 pixel size after 1/2 pixel dislocation superposition exposure, and is even scaled down to less than 0.1 pixel after 1/4 pixel dislocation superposition exposure. At this point, the edge of the lithography pattern is appropriately smoothed. The effectiveness of the above-mentioned method that improves the edge smoothness of the lithography pattern is demonstrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA