Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 62(4): 1437-1446, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36652943

RESUMEN

An electrocatalyst with a large active site is critical for the development of a high-performance electrochemical sensor. This work demonstrates the fabrication of an iron diselenide (FeSe2)-modified screen-printed carbon electrode (SPCE) for the electrochemical determination of furaltadone (FLD). It has been prepared by the facile method and systematically characterized with various microscopic/spectroscopic approaches. Due to advantageous physiochemical properties, the FeSe2/SPCE showed a low charge-transfer resistance value of 200 Ω in 5.0 mM [Fe(CN)6]3-/4- containing 0.1 M KCl. More importantly, the FeSe2/SPCE exhibited superior catalytic performance compared to the bare SPCE for FLD sensing based on the electrochemical response in terms of a peak potential of -0.44 V (vs Ag/AgCl (sat. KCl)) and cathodic response current of -22.8 µA. Operating at optimal conditions, the FeSe2-modified electrode showed wide linearity from 0.01 to 252.2 µM with a limit of detection of 0.002 µM and sensitivity of 1.15 µA µM-1 cm-2. The analytical performance of the FeSe2-based platform is significantly higher than many previously reported FLD electrochemical sensors. Furthermore, the FeSe2/SPCE also has a promising platform for FLD detection with high sensitivity, good selectivity, excellent stability, and robust reproducibility. Thus, the finding above shows that the FeSe2/SPCE is a highly suitable candidate for the electrochemical determination of glucose levels for real-time applications such as in human urine and river water samples.

2.
Environ Res ; 222: 115343, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36696945

RESUMEN

Ronidazole (RDZ) is a veterinary antibiotic drug that has been used in animal husbandry as feed. However, improper disposal and illegal use of pharmaceuticals have severely polluted water resources. Doping/substitution of metal ions is an effective strategy to change the material's crystal phase, morphology, and electrocatalytic activity. In this work, nickel (Ni2+)-doped cobalt molybdate microrods (NCMO MRs) were prepared for the electrochemical detection of RDZ. The catalyst was prepared by reflux method followed by calcination at 500 °C. The prepared catalyst was confirmed by various spectroscopic and microscopic analyses. XRD and Raman spectroscopy demonstrated that the phase transition from ß-CoMoO4 to α-CoMoO4 was achieved by Ni2+ doping. The SEM analysis showed that cobalt molybdate (CMO) microrods were self-assembled during Ni2+ doping and formed an urchin-like structure, and the average diameter of the MRs was ±50 nm. The electrocatalytic activity of the catalysts was analyzed using the CV technique. The NCMO MRs/GCE exhibited the higher current response than the pristine CMO. The electron transfer coefficient (α = 0.56) and heterogeneous rate constant (ks = 0.32 s-1) of NCMO MRs/GCE were evaluated by kinetic studies. In addition, the diffusion coefficient of RDZ was determined to be 2.32 × 10-5 cm2/s. Moreover, NCMO MRs/GCE exhibits a low detection limit for RDZ (15 nM) as well as a higher sensitivity (1.57 µA µM-1 cm-2). The fabricated RDZ sensor was successfully applied to analysis of lake and tap water samples. Based on the results, we believe that the as-prepared NCMO MRs/GCE is a viable electrode material for RDZ sensors in environmental monitoring.


Asunto(s)
Níquel , Ronidazol , Animales , Cobalto , Cinética , Antibacterianos
3.
Molecules ; 28(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37894499

RESUMEN

Significant advancements have been made in the development of CO2 reduction processes for applications such as electrosynthesis, energy storage, and environmental remediation. Several materials have demonstrated great potential in achieving high activity and selectivity for the desired reduction products. Nevertheless, these advancements have primarily been limited to small-scale laboratory settings, and the considerable technical obstacles associated with large-scale CO2 reduction have not received sufficient attention. Many of the researchers have been faced with persistent challenges in the catalytic process, primarily stemming from the low Faraday efficiency, high overpotential, and low limiting current density observed in the production of the desired target product. The highlighted materials possess the capability to transform CO2 into various oxygenates, including ethanol, methanol, and formates, as well as hydrocarbons such as methane and ethane. A comprehensive summary of the recent research progress on these discussed types of electrocatalysts is provided, highlighting the detailed examination of their electrocatalytic activity enhancement strategies. This serves as a valuable reference for the development of highly efficient electrocatalysts with different orientations. This review encompasses the latest developments in catalyst materials and cell designs, presenting the leading materials utilized for the conversion of CO2 into various valuable products. Corresponding designs of cells and reactors are also included to provide a comprehensive overview of the advancements in this field.

4.
Langmuir ; 38(33): 10162-10172, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35939572

RESUMEN

Binary metal oxides with carbon nanocomposites have received extensive attention as research hotspots in the electrochemistry field owing to their tunable properties and superior stability. This work illustrates the development of a facile sonochemical strategy for the synthesis of a copper bismuthate/graphene (GR) nanocomposite-modified screen-printed carbon electrode (CBO/GR/SPCE) for the electrochemical detection of catechol (CT). The formation of an as-prepared CBO/GR nanocomposite was comprehensively characterized. The electrochemical behavior of the CBO/GR/SPCE toward CT was investigated by voltammetry and amperometry techniques. The fabricated CBO/GR/SPCE manifests an excellent electrocatalytic performance toward CT with a lower peak potential and a higher current value compared to those of CBO/SPCE, GR/SPCE, and bare SPCE. It is attributed to enhanced electro-catalytic activity, synergetic effects, and good active sites of the CBO/GR nanocomposite. Under the electrochemical condition, the CBO/GR/SPCE displayed a wide linear sensing range, trace-level detection limit, acceptable sensitivity, and excellent selectivity. Furthermore, our proposed CBO/GR electrode was employed successfully for CT detection in water samples.


Asunto(s)
Grafito , Nanocompuestos , Carbono , Catecoles , Cobre/química , Técnicas Electroquímicas , Electrodos , Grafito/química , Nanocompuestos/química
5.
Environ Res ; 207: 112108, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34571028

RESUMEN

Environmental route such as degradation of toxic dyes can be improved through photochemical activity such as light driven photocatalytic degradation. Herein, fluorine and tin simultaneously doped TiO2 nanoparticles were synthesized and characterized. The formation of anatase phase in synthesized samples and the reduction in the crystallite size of doped TiO2 was confirmed from XRD results. The existence of O-Ti-O stretching vibration in pure and co-doped TiO2 confirmed from FTIR results. Optical studies reveal that the band gap of co-doped TiO2 is increased and hence it was concluded that the particle size of co-doped TiO2 is reduced compared with as-synthesized TiO2. The morphologies of TiO2 changed significantly with doping of fluorine and tin. It reveals majority of the particles are hexagons, pentagons and ellipse shaped and some of them are spheres with a mean particle size of 31.17 nm. PL studies showed the reduction in intensity for Sn-F/TiO2 accredited to the lesser recombination rate of electron-hole pair under UV light irradiation. Thus tin and fluorine doped TiO2 could be considered as a good candidate for photocatalytic activity. The photocatalytic activity of TiO2 and Sn-F/TiO2 nanoparticles was analyzed separately through the degradation of methylene blue (MB) under visible and UV light irradiation. The use of Sn and F ions in the synthesis of TiO2 are revealed not only create small sized nanoparticles but these water soluble nanoparticles have very good antibacterial and antifungal action by inhibiting the growth of bacteria and fungus.


Asunto(s)
Nanopartículas , Tiazinas , Catálisis , Luz , Nanopartículas/química , Fotoquímica , Titanio/química , Rayos Ultravioleta
6.
Environ Res ; 204(Pt A): 111917, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34453899

RESUMEN

In this paper, Magnesium Zinc Ferrite (MZF) nanoparticles (Mg0.8-xZnxFe2O4, where x = 0.2, 0.4 and 0.6) are successfully fabricated by combustion process. The prepared nanoparticles are characterized through XRD, FTIR, UV, SEM, EDS and TEM. It has been confirmed that the samples produced cubic spinel structure with crystal size in the range of 13-15 nm. From the ultraviolet spectrum, the optical band gap is calculated which ranges from 5.6 to 4.6 eV. TEM micrographs confirm the nanocrystalline nature of combustion derived ferrite nanoparticles with average particle diameter of 7-28 nm. Antibacterial studies confirmed that the nanoparticles are toxic to Pseudomonas aeruginosa consists of greatest zone of inhibition of 25 mm. The antibacterial and photocatalytic studies exhibited improved activity which is strongly influenced by the zinc doping. Photocatalytic degradation study reveal that the prepared nanoparticles function as perfect catalyst for degradation of Methylene Blue (MB) dye and Textile Dyeing Waste Water (TDWW) under UV light, thus revealing their potential usage on organic pollutants.


Asunto(s)
Rayos Ultravioleta , Aguas Residuales , Antibacterianos , Catálisis , Textiles , Zinc
7.
Environ Res ; 205: 112515, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896319

RESUMEN

In this work, the hydrothermally synthesized of BiVO4@MoS2 hierarchical nano-heterojunction composite is employed as a novel electrocatalyst for electrochemical sensing of Furazolidone (FZE) drug by modifying the glassy carbon electrodes (GCE). The Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy are used to thoroughly investigate the functional groups, vibrational modes, crystal structure, elemental composition and surface topography of the heterojunction composite. The physical characterization results revealed the successful construction of 1D-2D BiVO4@MoS2 hierarchical nano-heterojunction composite. When these unique architectures are reinforced on GCE surface, we achieved an enhanced electroactive surface area of 0.154 cm2. The electrochemical performance of 1D-2D BiVO4@MoS2 is examined though cyclic voltammetry and differential pulse voltammetry (DPV) analysis. The BiVO4@MoS2 composites exhibited an excellent electrocatalytic activity in sensing of FZE with superior linear detection ranges of 0.01-14 and 14-614 µM. The limit of detection (LOD) of the BiVO4@MoS2 based sensor is determined to be 2.9 nM which is far superior than other reported FZE sensors. Consequently, it is evident from the investigation that the BiVO4@MoS2 based FZE sensor can be recommended for analyzing real time samples like human urine and blood serum with appreciable recovery.


Asunto(s)
Furazolidona , Molibdeno , Técnicas Electroquímicas/métodos , Electrodos , Humanos , Límite de Detección , Molibdeno/química
8.
Mikrochim Acta ; 189(3): 118, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35195788

RESUMEN

A WS2/GdCoO3 nanocomposite was successfully prepared using hydrothermal-assisted synthesis. Our prepared WS2/GdCoO3 nanocomposite was fabricated on a glassy carbon electrode (GCE) for the detection of quercetin (QCT). The WS2/GdCoO3 nanomaterial was characterized by powder XRD, micro-Raman, FT-IR, XPS, FE-SEM, and HR-TEM, which proved that WS2 nanoplates were finely dispersed on the surface of the GdCoO3 nanoflakes. The electrocatalytic performance of WS2/GdCoO3 was investigated by the EIS technique, and it exhibited a small semi-circle, which confirms that it has a large active surface area and high electrical conductivity. The electrochemical behavior of QCT at the WS2/GdCoO3 sensor was explored by using the CV and DPV methods. The proposed electrochemical sensor exhibited excellent electrochemical response toward QCT with a wide linear range of 0.001 to 329 µM, low limit of detection (LOD) of 0.003 µM, and limit of quantification (LOQ) of 0.0101 µM. The sensor also displayed excellent selectivity, sensitivity, reproducibility, and stability. Additionally, the WS2/GdCoO3 sensor was utilized for the detection of QCT in apple juice and grape juice samples, and it exhibited good recovery results.

9.
Molecules ; 27(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35164025

RESUMEN

Carbon-based nanocomposites have developed as the most promising and emerging materials in nanoscience and technology during the last several years. They are microscopic materials that range in size from 1 to 100 nanometers. They may be distinguished from bulk materials by their size, shape, increased surface-to-volume ratio, and unique physical and chemical characteristics. Carbon nanocomposite matrixes are often created by combining more than two distinct solid phase types. The nanocomposites that were constructed exhibit unique properties, such as significantly enhanced toughness, mechanical strength, and thermal/electrochemical conductivity. As a result of these advantages, nanocomposites have been used in a variety of applications, including catalysts, electrochemical sensors, biosensors, and energy storage devices, among others. This study focuses on the usage of several forms of carbon nanomaterials, such as carbon aerogels, carbon nanofibers, graphene, carbon nanotubes, and fullerenes, in the development of hydrogen fuel cells. These fuel cells have been successfully employed in numerous commercial sectors in recent years, notably in the car industry, due to their cost-effectiveness, eco-friendliness, and long-cyclic durability. Further; we discuss the principles, reaction mechanisms, and cyclic stability of the fuel cells and also new strategies and future challenges related to the development of viable fuel cells.

10.
Analyst ; 146(2): 664-673, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33206733

RESUMEN

In this work, Ni-doped ZrO2 nanoparticles (NPs) were used to decorate multi-walled carbon nanotubes (MWCNTs) to obtain a Ni-ZrO2/MWCNT nanocomposite, which acted as an efficient electrode material for the highly sensitive electrochemical detection of the anti-inflammatory drug 5-amino salicylic acid (5-ASA). The Ni-ZrO2 NPs were obtained through a facile co-precipitation method, and the subsequent support of these Ni-ZrO2 NPs onto MWCNTs was accomplished via an ultrasonication technique. Supporting Ni-ZrO2 NPs on MWCNTs not only results in excellent catalytic properties, but it also substantially enhances the surface area, electrical conductivity, and electron transfer process. The electrochemical activity of the synthesized Ni-ZrO2/MWCNT nanocomposite was systematically investigated via cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The constructed Ni-ZrO2/MWCNT-modified glassy carbon (GC) electrode manifests superior electrocatalytic oxidation activity toward 5-ASA, with a lower peak potential compared with Ni-ZrO2-NP- and MWCNT-modified GC electrodes. Importantly, the proposed biosensor exhibited excellent sensitivity during the detection of 5-ASA with a wide linear concentration range (0.001-500 µM) and a low detection limit of 0.0029 µM. Moreover, the biosensor demonstrated excellent repeatability, reproducibility, stability, and high specificity toward 5-ASA detection in the presence of different interfering species. Furthermore, the biosensor showed satisfactory recovery rates in complex biological samples, such as human blood serum, human urine, and 5-ASA tablet samples.


Asunto(s)
Electroquímica/métodos , Límite de Detección , Mesalamina/análisis , Nanopartículas/química , Nanotubos de Carbono/química , Níquel/química , Circonio/química , Humanos , Mesalamina/sangre , Mesalamina/orina , Modelos Moleculares , Conformación Molecular , Nanocompuestos/química
11.
Inorg Chem ; 60(4): 2464-2476, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33534999

RESUMEN

Apart from perovskites, the development of different types of pyrochlore oxides is highly focused on various electrochemical applications in recent times. Based on this, we have synthesized pyrochlore-type praseodymium stannate nanoparticles (Pr2Sn2O7 NPs) by using a coprecipitation method and further investigated by different analytical and spectroscopic techniques such as X-ray diffraction, Raman spectroscopy, field emission-scanning electron microscopy, high resolution-transmission electron microscopy, and X-ray photoelectron spectroscopy analysis. Followed by this, we have designed a unique and novel electrochemical sensor for nitrofurazone detection, by modifying the glassy carbon electrode (GCE) with the prepared Pr2Sn2O7 NPs. For that, the electrochemical experiments were performed by using cyclic voltammetry and differential pulse voltammetry techniques. The Pr2Sn2O7 NPs modified GCE exhibits high sensitivity (2.11 µA µM-1 cm-2), selectivity, dynamic linear ranges (0.01-24 µM and 32-332 µM), and lower detection limit (4 nM). Furthermore, the Pr2Sn2O7 NPs demonstrated promising real sample analysis with good recovery results in biological samples (human urine and blood serum) which showed better results than the noble metal catalysts. Based on these results, the present work gives clear evidence that the pyrochlore oxides are highly suitable electrode materials for performing outstanding catalytic activity toward electrochemical sensors.


Asunto(s)
Antiinfecciosos/administración & dosificación , Nanopartículas/química , Niobio/química , Nitrofurazona/análisis , Praseodimio/química , Compuestos de Estaño/química , Catálisis , Técnicas Electroquímicas/métodos , Humanos , Límite de Detección , Microscopía Electrónica de Rastreo , Espectroscopía de Fotoelectrones
12.
Ecotoxicol Environ Saf ; 209: 111828, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33385681

RESUMEN

Herein, we fabricated a feasible and accurate sensing platform for the quantification of toxic organic pollutant 2-nitroaniline (2-NA) in water samples through electrocatalyst made up of bismuth molybdate (Bi2MoO6, BMO) functionalized carbon nanofiber (f-CNF) modified electrode. The preparation of BMO/f-CNF composite is of two methods, such as co-precipitation (C-BMO/f-CNF) and ultrasonication method (U-BMO/f-CNF). The physicochemical properties of the composites were characterized by XRD, FTIR, Raman, BET, FE-SEM, and HR-TEM techniques. At U-BMO/f-CNF, the charge transfer resistance was low (Rct = 12.47 Ω) compared to C-BMO/f-CNF because nanosized U-BMO particles correctly aim at the defective sites of the f-CNF surface wall. Further, the electrocatalytic activity of C&U-BMO/f-CNF composites was examined by cyclic voltammetry (CV) and differential pulse voltammetry techniques (DPV) for the electrochemical detection of 2-nitroaniline (2-NA). The U-BMO/f-CNF/GCE shows a higher cathodic current, wide dynamic linear range of 0.01-168.01 µM, and superior electrocatalytic activity with a low detection limit (0.0437 µM) and good sensitivity (0.6857 µA µM-1 cm-2). The excellent selectivity nature of U-BMO/f-CNF/GCE was observed in the presence of various organic pollutants and a few toxic metal cations. The practical applicability such as stability, repeatability towards 2-NA outcomes with accepted results. Besides, the practical viability of as proposed U-BMO/f-CNF sensor was investigated in soil and lake water samples delivers good recovery results. Hence from these analyses, we conclude that U-BMO/f-CNF/GCE potential for the determination of hazardous environmental pollutant 2-NA.


Asunto(s)
Bismuto , Técnicas Electroquímicas/métodos , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Molibdeno , Nanofibras/química , Compuestos de Anilina , Carbono/química , Electrodos , Suelo
13.
Ecotoxicol Environ Saf ; 220: 112373, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34058675

RESUMEN

The electronic conductivity of the metal oxides is generally increased by hybridization of highly conductive carbon supportive materials. In this present work, we have demonstrated a novel one-pot preparation of cerium niobate (CeNbO4) nanoparticles embedded with graphene oxide (GO/CeNbO4) composite, for ultrasensitive detection of the photographic developing agent, metol (MTL). The as-prepared GO/CeNbO4 was analyzed by various characterization techniques. The intensive characterization techniques were used to affirm the detailed structural moiety, size, morphology, and surface area of GO/CeNbO4. The GO/CeNbO4 modified glassy carbon electrode (GCE) affords a superior electrocatalytic activity toward MTL. The obtained amperometric response on the GO/CeNbO4/GCE holding an extremely low level detection of 10 nM and superior sensitivity of 10.97 µA µM-1 cm-2 toward MTL detection. Besides, the GO/CeNbO4/GCE also gives excellent selectivity, stability, repeatability, and reproducibility. We achieved excellent recovery results in real photographic solution and river water samples analysis with great accuracy. This work offers a novel insight into the growth of the carbon-based niobate family with electrochemical sensor applications.


Asunto(s)
Aminofenoles/análisis , Técnicas Electroquímicas/métodos , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Nanocompuestos/química , Ríos/química , Sulfatos/análisis , Carbono/química , Catálisis , Cerio/química , Electricidad , Electrodos , Grafito/química , Industrias , Nanopartículas/química , Niobio/química , Óxidos/química , Compuestos de Oxígeno/química , Fotograbar , Reproducibilidad de los Resultados , Soluciones , Agua/química
14.
Ecotoxicol Environ Saf ; 211: 111934, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33472109

RESUMEN

In the present work, we reported a one pot simple colloidal-gel synthesis of molybdenum bismuth vanadate (MoBiVO4). The charge transfer property of MoBiVO4 was improved by developing a composite with graphene oxide (GO) through sonochemical technique. The optical and morphological analysis revealed that successful formation of GO-MoBiVO4 composite without any other filth. As prepared composite was used to modify the superficial surface of glassy carbon electrode (GO-MoBiVO4/GCE) and applied for the selective detection of environmental pollutant 2, 4, 6 trichrlorophenol (TCP). The electron channeling capability of GO with molybdenum bismuth vanadate possessed a superior electrochemical response in cyclic voltammetry (CV), whereas bare GCE and other modified electrodes provided an inferior response with lower current response. The differential pulse voltammetry (DPV) response of TCP at GO-MoBiVO4/GCE outcomes with low level detection of 0.4 nM and higher sensitivity of 2.49 µA µM-1 cm-2 with wider linear response 0.199-17.83 µM. Furthermore, the proposed sensor applied in practicability analysis and the results indicates GO-MoBiVO4/GCE prominent towards electrochemical detection of TCP.


Asunto(s)
Bismuto/química , Clorofenoles/análisis , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Grafito/química , Molibdeno/química , Vanadatos/química , Carbono/química , Clorofenoles/química , Técnicas Electroquímicas/métodos , Electrodos , Contaminantes Ambientales/química
15.
Ecotoxicol Environ Saf ; 207: 111285, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32931964

RESUMEN

The present work scrutinized the voltammetric analysis of hazardous herbicide aclonifen (ACF) in actual soil and river water samples utilizing the electrochemical method. The electrochemical sensing device was fabricated for the determination of ACF using gadolinium niobate (GdNbO4) nanoparticles modified glassy carbon electrode (GCE). The novel GdNbO4 sensing material was prepared via a simple co-precipitation method. Several characterization techniques (TEM, EDS, XRD, XPS, and BET) were utilized to analyze the structural features of the GdNbO4. The enhanced electrochemical behavior of GdNbO4 modified GCE towards ACF was observed compared to bare GCE. The cyclic voltammetry response revealed that the prepared sensor shows the lower negative potential with a dramatic increase in the peak current of ACF compared to bare GCE. In the differential pulse voltammetry, the limit of detection (1.15 nM) and sensitivity (23 µA µM-1 cm-2) of the ACF on the GdNbO4 modified GCE was comparatively superior to the formerly proposed ACF based sensor. This sensor reveals good selectivity, repeatability, reproducibility, and long-term stability. The reliability of the sensor exhibits satisfactory recovery results for ACF detection in river water and soil samples.


Asunto(s)
Compuestos de Anilina/análisis , Técnicas Electroquímicas/métodos , Monitoreo del Ambiente/métodos , Herbicidas/análisis , Nanopartículas/química , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Carbono , Catálisis , Electrodos , Límite de Detección , Reproducibilidad de los Resultados , Ríos/química , Suelo/química , Propiedades de Superficie
16.
Mikrochim Acta ; 188(8): 277, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34322766

RESUMEN

The highly selective and sensitive electrochemical detection of highly toxic fungicide carbendazim (CBZ) by the iron (Fe)-doped copper vanadate (CuVO4; CuV) is discussed. The Fe-doped copper vanadate (Fe-CuV) is prepared by the simple co-precipitation method followed by an annealing process which produced high crystallinity. The material properties of Fe-CuV are characterized by XRD, Raman spectrometry, XPS analysis, HRTEM, and SAED pattern. The electrochemical characterization of Fe-CuV towards CBZ detection are done by CV and DPV techniques. The Fe-CuV/GCE exhibits good electroanalytical activity towards the electro-oxidation of CBZ at the potential of 0.81 V vs Ag/AgCl. The developed sensor electrode revealed a linear range of 0.01 to 83.1 µM and a limit of detection of about 5 nM. In addition, Fe-CuV/GCE reveals good storage stability (RSD = 2.63%) and reproducibility (RSD = 2.85%) for the electro-oxidation of CBZ. The electrode material was applied to the detection of CBZ in apple juice and soy milk samples, and the results were discussed. Thus, our projected Fe-CuV/GCE can be employed as electrode material in a rapid onsite sensor for the detection and determination of noxious pollutants.


Asunto(s)
Bencimidazoles/análisis , Carbamatos/análisis , Cobre/química , Fungicidas Industriales/análisis , Hierro/química , Nanopartículas del Metal/química , Nanopartículas/química , Vanadatos/química , Técnicas Biosensibles , Técnicas Electroquímicas , Electrodos , Contaminantes Ambientales/química , Contaminación de Alimentos/análisis , Jugos de Frutas y Vegetales/análisis , Humanos , Límite de Detección , Reproducibilidad de los Resultados , Leche de Soja/química
17.
Mikrochim Acta ; 188(6): 196, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34036435

RESUMEN

The one-step synthesis of heteroatom-doped porous carbons is reported with the in situ formation of cobalt oxide nanoparticles for dual electrochemical applications (i.e., electrochemical sensor and supercapacitor). A single molecular template of zeolitic imidazole framework-67 (ZIF-67) was utilized for the solid-state synthesis of cobalt oxide nanoparticle-decorated nitrogen-doped porous carbon (Co3O4@NPC) nanocomposite through a facile calcination treatment. For the first time, Co3O4@NPC nanocomposite derived from ZIF-67 has been applied as an electrode material for the efficient electrochemical detection of anticancer drug flutamide (FLU). The cyclic voltammetry studies were performed in the operating potential from 0.15 to - 0.65 V (vs. Ag/AgCl). Interestingly, the fabricated drug sensor exhibited a very low reduction potential (- 0.42 V) compared to other  reported sensors. The fabricated sensor exhibited good analytical performance in terms of low detection limit (12 nM), wide linear range (0.5 to 400 µM), and appreciable recovery results (~ 98%, RSD 1.7% (n = 3)) in a human urine sample. Hereafter, we also examined the supercapacitor performance of the Co3O4@NPC-modified Ni foam in a 1M KOH electrolyte, and noticeable a specific capacitance of 525 F g-1 at 1.5 A g-1 was attained, with long-term cycling stability. The Co3O4@NPC nanocomposite supercapacitor experiments outperform the associated MOF-derived carbons and the Co3O4-based nanostructure-modified electrodes.


Asunto(s)
Antineoplásicos/orina , Capacidad Eléctrica , Técnicas Electroquímicas/métodos , Flutamida/orina , Nanopartículas del Metal/química , Nanocompuestos/química , Carbono/química , Catálisis , Cobalto/química , Técnicas Electroquímicas/instrumentación , Electrodos , Humanos , Límite de Detección , Estructuras Metalorgánicas/química , Óxidos/química , Porosidad , Reproducibilidad de los Resultados
18.
Mikrochim Acta ; 188(1): 19, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33404774

RESUMEN

A needle-shaped perovskite, barium stannate (BaSnO3), was synthesized via a co-precipitation technique for the simultaneous electrochemical determination of antibiotic drug nitrofurantoin (NFTO) and pericardial drug nifedipine (NFP). The spectroscopic and microscopic result confirms that as-prepared BaSnO3 particles formed with desired crystalline nature, functional group, pore size, pore diameter, and fine needle-like morphology. The simultaneous electrochemical detection of the two pharmaceutical compounds was examined via cyclic voltammetry (CV) and differential pulse voltammetry (DPV) technique using BaSnO3-modified glassy carbon electrode (BaSnO3/GCE) at a potential range from +0.4 to - 1.2 V. The discrete and simultaneous detection of NFTO and NFP at the BaSnO3 sensor exhibits higher catalytic activity in terms of cathodic current and cathodic potential compared to bare GCE. DPV results of the BaSnO3 sensor provide improved linear ranges and limits of detection for NFTO (0.01-42.65 µM; 42.65-557.65 µM, 0.062 µM, respectively) and NFP (0.01-697.65 µM, 0.0168 µM, respectively). Besides, the BaSnO3-fabricated sensor exhibits good sensitivity, reproducibility, and repeatability. The modified electrode shows excellent recoveries of NFTO (97.0-100.7%) and NFP (98.7-101.3%) in plasma, urine, and milk samples with an acceptable relative standard deviation (RSD) of 1.6-4.8%. Graphical abstract Needle-shaped BaSnO3 perovskite material for simultaneous electrochemical sensing of pharmaceutical drugs.

19.
Mikrochim Acta ; 188(2): 35, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420619

RESUMEN

Two-dimensional (2D) MoS2core-shell nanoparticles were synthesized using an eco-friendly surface functionalization-agent with L-glutathione and cystamine (L-GSH-MoS2-CYS) using ultrasonic frequency of 20-25 kHz. The novel modified electrode was evaluated for the electrochemical detection of doxorubicin (DOX), through cyclic and differential pulse voltammetric techniques. The electro-catalytic oxidation currents of DOX exhibited a linear relationship in the concentration ranges 0.1-78.3 and 98.3-1218 µM, with a detection limit of 31 nM. A sensitivity of 0.017µA µM-1 cm-2 was acquired at 0.48 V. The fabricated L-GSH-MoS2-CYS modified electrode showed excellent precision, selectivity, repeatability, and reproducibility during the determination of DOX levels in blood serum samples. Thus, the fabricated L-GSH-MoS2-CYS/GCE modified electrode has potential for clinical applications for optimization of chemotherapeutic drugs owing to its selectivity, ease of preparation, and long-term stability. Graphical abstract.


Asunto(s)
Cistamina/química , Disulfuros/química , Doxorrubicina/sangre , Glutatión/química , Nanopartículas del Metal/química , Molibdeno/química , Carbono/química , Doxorrubicina/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Humanos , Límite de Detección , Oxidación-Reducción , Reproducibilidad de los Resultados
20.
Mikrochim Acta ; 188(3): 103, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33646401

RESUMEN

Molybdenum disulfide (MoS2) surface functionalization was performed with a catechol-containing polymer sodium alginate (SA) and dopamine (DA) through simultaneous MoS2 exfoliation and self-polymerization of DA. The MoS2/SA-PDA nanocomposite was characterized using spectroscopic, microscopic, and electroanalytical techniques to evaluate its electrocatalytic performance. The electrocatalytic behavior of the MoS2/SA-PDA nanocomposite modified electrode for the detection of acebutolol (ACE), a cardio-selective ß-blocker drug was explored  through cyclic voltammetric and differential pulse voltammetric techniques. The influence of scan rate, concentration, and pH value on the oxidation peak current of ACE was investigated  to optimize the deducting condition. The electrochemical activity of the MoS2/SA-PDA nanocomposite electrode was attributed to the existence of reactive functional groups being contributed from SA, PDA, and MoS2 exhibiting a synergic effect. The MoS2/SA-PDA nanocomposite modified electrode exhibits admirable electrocatalytic activity with a wide linear response range (0.009 to 520 µM), low detection limit (5 nM), and high sensitivity (0.354 µA µM-1 cm-2) also in the presence of similar (potentially interfering) compounds. The fabricated MoS2/SA-PDA nanocomposite modified electrode can be useful for the detection of ACE in pharmaceutical analysis.


Asunto(s)
Acebutolol/análisis , Antagonistas de Receptores Adrenérgicos beta 1/análisis , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Nanocompuestos/química , Acebutolol/sangre , Acebutolol/química , Acebutolol/orina , Antagonistas de Receptores Adrenérgicos beta 1/sangre , Antagonistas de Receptores Adrenérgicos beta 1/química , Antagonistas de Receptores Adrenérgicos beta 1/orina , Alginatos/química , Técnicas Biosensibles/métodos , Disulfuros/química , Técnicas Electroquímicas/métodos , Electrodos , Humanos , Indoles/química , Límite de Detección , Molibdeno/química , Oxidación-Reducción , Polímeros/química , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA