Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(20): e2202812119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35533282

RESUMEN

Developing facile approaches for preparing efficient electrocatalysts is of significance to promote sustainable energy technologies. Here, we report a facile iron-oxidizing bacteria corrosion approach to construct a composite electrocatalyst of nickel­iron oxyhydroxides combined with iron oxides. The obtained electrocatalyst shows improved electrocatalytic activity and stability for oxygen evolution, with an overpotential of ∼230 mV to afford the current density of 10 mA cm−2. The incorporation of iron oxides produced by iron-oxidizing bacteria corrosion optimizes the electronic structure of nickel­iron oxyhydroxide electrodes, which accounts for the decreased free energy of oxygenate generation and the improvement of OER activity. This work demonstrates a natural bacterial corrosion approach for the facile preparation of efficient electrodes for water oxidation, which may provide interesting insights in the multidisciplinary integration of innovative nanomaterials and emerging energy technologies.


Asunto(s)
Níquel , Oxígeno , Microbiología del Agua , Corrosión , Compuestos Férricos , Hierro , Agua
2.
J Am Chem Soc ; 146(29): 20530-20538, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38991189

RESUMEN

The electrochemical reduction reaction of carbon dioxide (CO2RR) into valuable products offers notable economic benefits and contributes to environmental sustainability. However, precisely controlling the reaction pathways and selectively converting key intermediates pose considerable challenges. In this study, our theoretical calculations reveal that the active sites with different states of copper atoms (1-3-5-7-9) play a pivotal role in the adsorption behavior of the *CHO critical intermediate. This behavior dictates the subsequent hydrogenation and coupling steps, ultimately influencing the formation of the desired products. Consequently, we designed two model electrocatalysts comprising Cu single atoms and particles supported on CeO2. This design enables controlled *CHO intermediate transformation through either hydrogenation with *H or coupling with *CO, leading to a highly selective CO2RR. Notably, our selective control strategy tunes the Faradaic efficiency from 61.1% for ethylene (C2H4) to 61.2% for methane (CH4). Additionally, the catalyst demonstrated a high current density and remarkable stability, exceeding 500 h of operation. This work not only provides efficient catalysts for selective CO2RR but also offers valuable insights into tailoring surface chemistry and designing catalysts for precise control over catalytic processes to achieve targeted product generation in CO2RR technology.

3.
BMC Med Imaging ; 24(1): 72, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532313

RESUMEN

BACKGROUND: Quantitative determination of the correlation between cognitive ability and functional biomarkers in the older brain is essential. To identify biomarkers associated with cognitive performance in the older, this study combined an index model specific for resting-state functional connectivity (FC) with a supervised machine learning method. METHODS: Performance scores on conventional cognitive test scores and resting-state functional MRI data were obtained for 98 healthy older individuals and 90 healthy youth from two public databases. Based on the test scores, the older cohort was categorized into two groups: excellent and poor. A resting-state FC scores model (rs-FCSM) was constructed for each older individual to determine the relative differences in FC among brain regions compared with that in the youth cohort. Brain areas sensitive to test scores could then be identified using this model. To suggest the effectiveness of constructed model, the scores of these brain areas were used as feature matrix inputs for training an extreme learning machine. classification accuracy (CA) was then tested in separate groups and validated by N-fold cross-validation. RESULTS: This learning study could effectively classify the cognitive status of healthy older individuals according to the model scores of frontal lobe, temporal lobe, and parietal lobe with a mean accuracy of 86.67%, which is higher than that achieved using conventional correlation analysis. CONCLUSION: This classification study of the rs-FCSM may facilitate early detection of age-related cognitive decline as well as help reveal the underlying pathological mechanisms.


Asunto(s)
Encéfalo , Cognición , Adolescente , Humanos , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Biomarcadores
4.
Am J Otolaryngol ; 45(6): 104475, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39121639

RESUMEN

OBJECTIVE: The objective of this study was to compare the outcomes of endoscopic cartilage underlay myringoplasty(CNM) with or without balloon Eustachian tuboplasty (BET) for the treatment of chronic perforation with Eustachian tube dysfunction (ETD). MATERIALS AND METHODS: A total of 50 ears diagnosed with chronic perforation and ETD were randomly divided into receiving alone CNM and CNM + BET. During the 12 months follow-up, the Eustachian tube score (ETS), Eustachian Tube Dysfunction Questionnaire-7 (ETDQ-7), ET inflammation scale, hearing results and graft success rate of the patients were recorded and analyzed. RESULTS: The improvement in the ETDQ-7 score was 6.23 ± 2.51 in the CNM + BET group, which was significantly higher than that in the CNM group (4.22 ± 3.85, P < 0.01) at postoperative 3 months, however, no significant between-group difference was found at post-12 months.The graft success rate was 88.0 % in the CNM group and 92.0 % in the CNM + BET group at postoperative 3 months (P > 0.05). Also, no significant difference was found among two groups (84.0 % vs 88.0 %, P > 0.05).The ABG improvement was 13.16 ± 3.19 dB in the CNM + BET group and 9.74 ± 2.56 dB in the CNM group, with a statistically significant between-group difference (P < 0.01)at postoperative 3 months. However, no significant between-group difference was found at postoperative 12 months. During followup process, neither complications nor patulous symptoms were noted. No patients developted atelectasis or otitis media with effusion. However, myringitis was seen in 8 % patients in the CNM group and 12 % patients in the CNM + BET group. CONCLUSIONS: Although BET combined with endoscopic cartilage myringoplasty had better short-term improvement of hearing and ETDQ-7 scores compared with endoscopic cartilage myringoplasty for the treatment of chronic large perforation with ETD, the long-term outcomes was not satisfactory. Also, BET did not improve the 3-and 12 months graft success rate.

5.
Nano Lett ; 23(6): 2312-2320, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36861218

RESUMEN

Positively charged Cu sites have been confirmed to significantly promote the production of multicarbon (C2) products from an electrochemical CO2 reduction reaction (CO2RR). However, the positively charged Cu has difficulty in existing under a strong negative bias. In this work, we design a Pdδ--Cu3N catalyst containing charge-separated Pdδ--Cuδ+ atom pair that can stabilize the Cuδ+ sites. In situ characterizations and density functional theory reveal that the first reported negatively charged Pdδ- sites exhibited a superior CO binding capacity together with the adjacent Cuδ+ sites, synergistically promoting the CO dimerization process to produce C2 products. As a result, we achieve a 14-fold increase in the C2 product Faradaic efficiency (FE) on Pdδ--Cu3N, from 5.6% to 78.2%. This work provides a new strategy for synthesizing negative valence atom-pair catalysts and an atomic-level modulation approach of unstable Cuδ+ sites in the CO2RR.

6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 803-806, 2024 Jul 10.
Artículo en Zh | MEDLINE | ID: mdl-38946361

RESUMEN

OBJECTIVE: To explore the application of an automatic slide-dropping instrument in bone marrow chromosomal karyotyping. METHODS: The effects of manual and automatic dropping methods under different environmental humidity were retrospectively analyzed, and the repeatability of the automatic dropping method was analyzed. RESULTS: No statistical difference was found between the results of automatic and manual dropping methods under the optimum ambient humidity and high humidity (P > 0.05). At low humidity, there was a statistical difference between the two methods (P < 0.05). With regard to the repeatability, the coefficient of variations of the automatic dropping method for the number of split phases, the rate of good dispersion and the rate of overlap were all lower than those of the manual dropping method. A statistical difference was also found in the number of split phases (P < 0.05) but not in the discrete excellent rate and overlapping rate between the two methods (P > 0.05). CONCLUSION: Better effect can be obtained by the automatic dropping instrument. It is suggested to gradually replace manual work with machine.


Asunto(s)
Cariotipificación , Humanos , Cariotipificación/métodos , Adulto , Femenino , Masculino , Médula Ósea , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven , Adolescente , Humedad , Automatización , Niño , Anciano , Preescolar
7.
Angew Chem Int Ed Engl ; : e202411591, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136330

RESUMEN

Deeply electrolytic reduction of carbon dioxide (CO2) to high-value ethylene (C2H4) is very attractive. However, the sluggish kinetics of C-C coupling seriously results in the low selectivity of CO2 electroreduction to C2H4. Herein, we report a copper-based polyhedron (Cu2) that features uniformly distributed and atomically precise bi-Cu units, which can stabilize *OCCO dipole to facilitate the C-C coupling for high selective C2H4 production. The C2H4 faradaic efficiency (FE) reaches 51% with a current density of 469.4 mA cm-2, much superior to the Cu single site catalyst (Cu SAC) (~0%). Moreover, the Cu2 catalyst has a higher turnover frequency (TOF, ~520 h-1) compared to Cu nanoparticles (~9.42 h-1) and Cu SAC (~0.87 h-1). In situ characterizations and theoretical calculations revealed that the unique Cu2 structural configuration could optimize the dipole moments and stabilize the *OCCO adsorbate to promote the generation of C2H4.

8.
Angew Chem Int Ed Engl ; 63(30): e202316755, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739420

RESUMEN

The hydrazine oxidation-assisted H2 evolution method promises low-input and input-free hydrogen production. However, developing high-performance catalysts for hydrazine oxidation (HzOR) and hydrogen evolution (HER) is challenging. Here, we introduce a bifunctional electrocatalyst α-MoC/N-C/RuNSA, merging ruthenium (Ru) nanoclusters (NCs) and single atoms (SA) into cubic α-MoC nanoparticles-decorated N-doped carbon (α-MoC/N-C) nanowires, through electrodeposition. The composite showcases exceptional activity for both HzOR and HER, requiring -80 mV and -9 mV respectively to reach 10 mA cm-2. Theoretical and experimental insights confirm the importance of two Ru species for bifunctionality: NCs enhance the conductivity, and its coexistence with SA balances the H ad/desorption for HER and facilitates the initial dehydrogenation during the HzOR. In the overall hydrazine splitting (OHzS) system, α-MoC/N-C/RuNSA excels as both anode and cathode materials, achieving 10 mA cm-2 at just 64 mV. The zinc hydrazine (Zn-Hz) battery assembled with α-MoC/N-C/RuNSA cathode and Zn foil anode can exhibit 97.3 % energy efficiency, as well as temporary separation of hydrogen gas during the discharge process. Therefore, integrating Zn-Hz with OHzS system enables self-powered H2 evolution, even in hydrazine sewage. Overall, the amalgamation of NCs with SA achieves diverse catalytic activities for yielding multifold hydrogen gas through advanced cell-integrated-electrolyzer system.

9.
Small ; : e2308530, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38059871

RESUMEN

Metal single-atom catalysts (M-SACs) attract extraordinary attention for promoting oxygen reduction reaction (ORR) with 100% atomic utilization. However, low metal loading (usually less than 2 wt%) limits their overall catalytic performance. Herein, a hierarchical-structure-stabilization strategy for fabricating high-loading (18.3%) M-SACs with efficient ORR activity is reported. Hierarchical pores structure generated with high N content by SiO2 can provide more coordination sites and facilitate the adsorption of Fe3+ through mesoporous and confinement effect of it stabilizes Fe atoms in micropores on it during pyrolysis. High N content on hierarchical pores structure could provide more anchor sites of Fe atoms during the subsequent secondary pyrolysis and synthesize the dense and accessible Fe-N4 sites after subsequent pyrolysis. In addition, Se power is introduced to modulate the electronic structure of Fe-N4 sites and further decrease the energy barrier of the ORR rate-determining step. As a result, the Fe single atom catalyst delivers unprecedentedly high ORR activity with a half-wave potential of 0.895 V in 0.1 M KOH aqueous solution and 0.791 V in 0.1 M HClO4 aqueous solution. Therefore, a hierarchical-pore-stabilization strategy for boosting the density and accessibility of Fe-N4 species paves a new avenue toward high-loading M-SACs for various applications such as thermocatalysis and photocatalysis.

10.
Angew Chem Int Ed Engl ; 62(3): e202215136, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36399049

RESUMEN

Precise design and tuning of the micro-atomic structure of single atom catalysts (SACs) can help efficiently adapt complex catalytic systems. Herein, we inventively found that when the active center of the main group element gallium (Ga) is downsized to the atomic level, whose characteristic has significant differences from conventional bulk and rigid Ga catalysts. The Ga SACs with a P, S atomic coordination environment display specific flow properties, showing CO products with FE of ≈92 % at -0.3 V vs. RHE in electrochemical CO2 reduction (CO2 RR). Theoretical simulations demonstrate that the adaptive dynamic transition of Ga optimizes the adsorption energy of the *COOH intermediate and renews the active sites in time, leading to excellent CO2 RR selectivity and stability. This liquid single atom catalysts system with dynamic interfaces lays the foundation for future exploration of synthesis and catalysis.

11.
Angew Chem Int Ed Engl ; 62(50): e202315621, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37902435

RESUMEN

Electrochemical CO2 reduction reaction (CO2 RR) over Cu catalysts exhibits enormous potential for efficiently converting CO2 to ethylene (C2 H4 ). However, achieving high C2 H4 selectivity remains a considerable challenge due to the propensity of Cu catalysts to undergo structural reconstruction during CO2 RR. Herein, we report an in situ molecule modification strategy that involves tannic acid (TA) molecules adaptive regulating the reconstruction of a Cu-based material to a pathway that facilitates CO2 reduction to C2 H4 products. An excellent Faraday efficiency (FE) of 63.6 % on C2 H4 with a current density of 497.2 mA cm-2 in flow cell was achieved, about 6.5 times higher than the pristine Cu catalyst which mainly produce CH4 . The in situ X-ray absorption spectroscopy and Raman studies reveal that the hydroxyl group in TA stabilizes Cuδ+ during the CO2 RR. Furthermore, theoretical calculations demonstrate that the Cuδ+ /Cu0 interfaces lower the activation energy barrier for *CO dimerization, and hydroxyl species stabilize the *COH intermediate via hydrogen bonding, thereby promoting C2 H4 production. Such molecule engineering modulated electronic structure provides a promising strategy to achieve highly selective CO2 reduction to value-added chemicals.

12.
J Am Chem Soc ; 144(28): 12807-12815, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35786905

RESUMEN

The renewable energy-powered electrolytic reduction of carbon dioxide (CO2) to methane (CH4) using water as a reaction medium is one of the most promising paths to store intermittent renewable energy and address global energy and sustainability problems. However, the role of water in the electrolyte is often overlooked. In particular, the slow water dissociation kinetics limits the proton-feeding rate, which severely damages the selectivity and activity of the methanation process involving multiple electrons and protons transfer. Here, we present a novel tandem catalyst comprising Ir single-atom (Ir1)-doped hybrid Cu3N/Cu2O multisite that operates efficiently in converting CO2 to CH4. Experimental and theoretical calculation results reveal that the Ir1 facilitates water dissociation into proton and feeds to the hybrid Cu3N/Cu2O sites for the *CO protonation pathway toward *CHO. The catalyst displays a high Faradaic efficiency of 75% for CH4 with a current density of 320 mA cm-2 in the flow cell. This work provides a promising strategy for the rational design of high-efficiency multisite catalytic systems.

13.
Sensors (Basel) ; 22(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35161860

RESUMEN

Epileptogenesis is the gradual dynamic process that progressively led to epilepsy, going through the latent stage to the chronic stage. During epileptogenesis, how the abnormal discharges make theta rhythm loss in the deep brain remains not clear. In this paper, a loss of theta rhythm was estimated based on time-frequency power using the longitudinal electroencephalography (EEG), recorded by deep brain electrodes (e.g., the intracortical microelectrodes such as stereo-EEG electrodes) with monitored epileptic spikes in a rat from the first region in the hippocampal circuit. Deep-brain EEG was collected from the period between adjacent sporadic interictal spikes (lasting 3.56 s-35.38 s) to the recovery period without spikes by videos while the rats were performing exploration. We found that loss of theta rhythm became more serious during the period between adjacent interictal spikes than during the recovery period without spike, and during epileptogenesis, more loss was observed at the acute stage than the chronic stage. We concluded that the emergence of the interictal spike was the direct cause of loss of theta rhythm, and the inhibitory effect of the interictal spike on ongoing theta rhythm was persistent as well as time dependent during epileptogenesis. With the help of the intracortical microelectrodes, this study provides a temporary proof of interictal spikes to produce ongoing theta rhythm loss, suggesting that the interictal spikes could correlate with the epileptogenesis process, display a time-dependent feature, and might be a potential biomarker to evaluate the deficits in theta-related memory in the brain.


Asunto(s)
Epilepsia del Lóbulo Temporal , Ritmo Teta , Animales , Encéfalo , Electrodos , Electroencefalografía , Hipocampo , Ratas
14.
Nano Lett ; 21(17): 7325-7331, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34493045

RESUMEN

Developing an efficient catalyst for the electrocatalytic CO2 reduction reaction (CO2RR) is highly desired because of environmental and energy issues. Herein, we report a single-atomic-site Cu catalyst supported by a Lewis acid for electrocatalytic CO2 reduction to CH4. Theoretical calculations suggested that Lewis acid sites in metal oxides (e.g., Al2O3, Cr2O3) can regulate the electronic structure of Cu atoms by optimizing intermediate absorption to promote CO2 methanation. Based on these theoretical results, ultrathin porous Al2O3 with enriched Lewis acid sites was explored as an anchor for Cu single atoms; this modification achieved a faradaic efficiency (FE) of 62% at -1.2 V (vs RHE) with a corresponding current density of 153.0 mA cm-2 for CH4 formation. This work demonstrates an effective strategy for tailoring the electronic structure of Cu single atoms for the highly efficient reduction of CO2 into CH4.

15.
Angew Chem Int Ed Engl ; 61(34): e202206579, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35715933

RESUMEN

Single-atom active-site catalysts have attracted significant attention in the field of photocatalytic CO2 conversion. However, designing active sites for CO2 reduction and H2 O oxidation simultaneously on a photocatalyst and combining the corresponding half-reaction in a photocatalytic system is still difficult. Here, we synthesized a bimetallic single-atom active-site photocatalyst with two compatible active centers of Mn and Co on carbon nitride (Mn1 Co1 /CN). Our experimental results and density functional theory calculations showed that the active center of Mn promotes H2 O oxidation by accumulating photogenerated holes. In addition, the active center of Co promotes CO2 activation by increasing the bond length and bond angle of CO2 molecules. Benefiting from the synergistic effect of the atomic active centers, the synthesized Mn1 Co1 /CN exhibited a CO production rate of 47 µmol g-1 h-1 , which is significantly higher than that of the corresponding single-metal active-site photocatalyst.

16.
Angew Chem Int Ed Engl ; 61(4): e202114450, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34767294

RESUMEN

The exploitation of highly efficient carbon dioxide reduction (CO2 RR) electrocatalyst for methane (CH4 ) electrosynthesis has attracted great attention for the intermittent renewable electricity storage but remains challenging. Here, N-heterocyclic carbene (NHC)-ligated copper single atom site (Cu SAS) embedded in metal-organic framework is reported (2Bn-Cu@UiO-67), which can achieve an outstanding Faradaic efficiency (FE) of 81 % for the CO2 reduction to CH4 at -1.5 V vs. RHE with a current density of 420 mA cm-2 . The CH4 FE of our catalyst remains above 70 % within a wide potential range and achieves an unprecedented turnover frequency (TOF) of 16.3 s-1 . The σ donation of NHC enriches the surface electron density of Cu SAS and promotes the preferential adsorption of CHO* intermediates. The porosity of the catalyst facilitates the diffusion of CO2 to 2Bn-Cu, significantly increasing the availability of each catalytic center.

17.
Mol Cell Biochem ; 476(12): 4265-4275, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34398353

RESUMEN

MicroRNAs (miRNAs) are a type of endogenous non-coding short-chain RNA, which plays a crucial role in the regulation of many essential cellular functions, including cellular migration, proliferation, invasion, autophagy, oxidative stress, apoptosis, and differentiation. The lung can be damaged by pathogenic microorganisms, as well as physical or chemical factors. Research has confirmed that miRNAs and lung cell apoptosis can affect the development and progression of several lung diseases. This article reviews the role of miRNAs in the development of lung disease through regulating host cell apoptosis.


Asunto(s)
Enfermedades Pulmonares/genética , Enfermedades Pulmonares/patología , MicroARNs/genética , Animales , Apoptosis/fisiología , Autofagia/fisiología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Humanos , Enfermedades Pulmonares/metabolismo
18.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(6): 1163-1172, 2021 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-34970900

RESUMEN

Entropy model is widely used in epileptic electroencephalogram (EEG) analysis, but there are few reports on how to objectively select the parameters to compute the entropy model in the analysis of resting-state functional magnetic resonance imaging (rfMRI). Therefore, an optimization algorithm to confirm the parameters in multi-scale entropy (MSE) model was proposed, and the location of epileptogenic hemisphere was taken as an example to test the optimization effect by supervised machine learning. The rfMRI data of 20 temporal lobe epilepsy (TLE) patients with hippocampal sclerosis, positive on structural magnetic resonance imaging, were divided into left and right groups. Then, the parameters in MSE model were optimized by the receiver operating characteristic curves (ROC) and area under ROC curve (AUC) values in sensitivity analysis, and the entropy value of the brain regions with statistically significant difference between the groups were taken as sensitive features to epileptogenic hemisphere lateral. The optimized entropy values of these bio-marker brain areas were considered as feature vectors input into the support vector machine (SVM). Finally, combining optimized MSE model with SVM could accurately distinguish epileptogenic hemisphere in TLE at an average accuracy rate of 95%, which was higher than the current level. The results show that the MSE model parameter optimization algorithm can accurately extract the functional imaging markers sensitive to the epileptogenic hemisphere, and achieve the purpose of objectively selecting the parameters for MSE in rfMRI, which provides the basis for the application of entropy in advanced technology detection.


Asunto(s)
Epilepsia del Lóbulo Temporal , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Entropía , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
19.
Angew Chem Int Ed Engl ; 60(44): 23614-23618, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34463412

RESUMEN

Electrochemical reduction of carbon dioxide (CO2 ) into chemicals and fuels has recently attracted much interest, but normally suffers from a high overpotential and low selectivity. In this work, single P atoms were introduced into a N-doped carbon supported single Fe atom catalyst (Fe-SAC/NPC) mainly in the form of P-C bonds for CO2 electroreduction to CO in an aqueous solution. This catalyst exhibited a CO Faradaic efficiency of ≈97 % at a low overpotential of 320 mV, and a Tafel slope of only 59 mV dec-1 , comparable to state-of-the-art gold catalysts. Experimental analysis combined with DFT calculations suggested that single P atom in high coordination shells (n≥3), in particular the third coordination shell of Fe center enhanced the electronic localization of Fe, which improved the stabilization of the key *COOH intermediate on Fe, leading to superior CO2 electrochemical reduction performance at low overpotentials.

20.
Angew Chem Int Ed Engl ; 59(27): 10807-10813, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32232890

RESUMEN

Carbon dioxide (CO2 ) conversion is promising in alleviating the excessive CO2 level and simultaneously producing valuables. This work reports the preparation of carbon nanorods encapsulated bismuth oxides for the efficient CO2 electroconversion toward formate production. This resultant catalyst exhibits a small onset potential of -0.28 V vs. RHE and partial current density of over 200 mA cm-2 with a stable and high Faradaic efficiency of 93 % for formate generation in a flow cell configuration. Electrochemical results demonstrate the synergistic effect in the Bi2 O3 @C promotes the rapid and selective CO2 reduction in which the Bi2 O3 is beneficial for improving the reaction kinetics and formate selectivity, while the carbon matrix would be helpful for enhancing the activity and current density of formate production. This work provides effective bismuth-based MOF derivatives for efficient formate production and offers insights in promoting practical CO2 conversion technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA